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Regular conjugacy classes in the Weyl group and 
integrable hierarchies 

F Delduc and L Fehdrt 
Laboratoire de Physique Moriquef.  ENS Lyon, 46 allee d'ltalie, F-69364 Lyon Cedex 07, 
France 

Received 16 June 1995 

Abstract. Generalized ~ d v  hierarchies associated by DrinfeldSokolov reduction with grade 1 
regular semisimple elements from non-equivalent Heisenberg subalgebras of a loop algebra 
G 4 C[A. .I-'] are studied. The graded Heisenbcrg subalgebras containing such elements are 
labelled by the regular conjugacy classes in the Weyl group \V@) of the simple Lie algebra G. 
A representative w E W(G) o f a  regular conjugacy class can be lifted to an inner automorphism 
of D given by ti = exp (2in ad lo lm) ,  where 10 is the defining vector of an $12 subalgebra of 0. 
The grading is then defined by the operator &lo = mX(d/db) + ad 10 and any grade 1 regular 
element A from the Heisenberg subalgebra associated with [w]  takes the form A = (C+ +.IC-), 
where [IO. C-] = -(m - I)C- and C+ is included in an SI? subalgebra containing lo. The 
largest eigenvalue of ad10 is (m - 1) except for some cases in h, E6.7.s. We explain how 
these Lie algebraic results follow from known results and apply them 10 ConsUUct integrable 
systems. If the largest ad 10 eigenvalue is (m - I). then using any grade I regular element from 
the Heisenberg subalgebra associated with [wl we can construct a Kdv system possessing the 
standard W-algebra defined by 10 as its second Poisson bracket algebra For F a classical Lie 
algebra. we derive pseudo-differential Lax operators for those non-principal Kdv systems that 
can be obtained as discrete reductions of KIV systems related to gin. Non-Abelian Toda systems 
are also considered 
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1. Introduction 

The purpose of this paper is to contribute to the classification of generalized MV systems 
that may be obtained from the Drinfeld-Sokolov approach to integrable hierarchies. One of 
the main achievements presented in the seminal paper [ l ]  by Drinfeld and Sokolov was the 
interpretation in terms of affine Lie algebras of the n-KdV hierarchies defined by Gel'fand 
and Dicke in [ 2 , 9  and Adler in  [4] in terms of the calculus of pseudo-differential operators. 
The phase space consisting of scalar Lax operators 

L = a n  +uian- '  t .., t u,-]a + U .  ui E cw(sl,c) (1.1) 
was interpreted as the reduced phase space following a Hamiltonian symmetry reduction 
applied to the dual of an affine Lie algebra. This explained the origin of the quadratic Adler- 
Gel'fand-Dicke Poisson bracket as a reduced Lie-Poisson bracket and also explained the 
commuting Hamiltonians generated by residues of fractional powers of L as being reductions 
of those obtained by applying the Adler-Kostant-Symes scheme to the affine Lie algebra 
(see also [5]) .  The properties of the matrix 

0 1 0 ..' 0 . .  
A. = [o  O .:. .:: :] (1.2) 

)& 0 ... .., 0 

played a crucial role in the construction. The centralizer of A, in the loop algebra 
Ql.) := gl. 8 C[h,  A-'] is a graded maximal Abelian subalgebra, which becomes the 
principal Heisenberg subalgebra upon central extension 161. The commuting flows were 
constructed out of this Abelian subalgebra making essential use of the principal grading and 
the regularity of the element A* that has grade 1. The other main achievement of Drinfeld 
and Sokolov was the derivation of new KdV-type hierarchies by generalizing the construction 
to an arbitrary affine Lie algebra using the respective principal Heisenberg subalgebra and 
its grade 1 regular element. Like the KdV-type systems of [l], the affine Toda systems are 
also based on the principal Heisenberg subalgebra, with the grading and the regular element 
of grade 1 playing an important role. 

The generalized KdV systems that will be studied in this paper will be associated 
with regular elements of grade 1 from certain non-principal Heisenberg subalgebras of 
t ( g )  := B 8  [A, A-'] for E a simple Lie algebra using the Hamiltonian reduction technique 
of [l]. Related non-Abelian affine Toda systems will also be presented. 

Generalizations of the DrinfeldSokolov construction of integrable hierarchies have 
already been considered in the literature. Soon after [l], Wilson 171 suggested associating 
systems of modified KdV- and Toda-type with any grade 1 semisimple element of any 
affine Lie algebra, with respect to a grading defined by an automorphism of finite order 
of the corresponding finite dimensional simple Lie algebra. In the context of Toda field 
theories, similar proposals can be found in [8-lo]. Concerning the important, apparently 
still open, problem of classifying the gradings that admit a grade I semisimple element. 



The Weyi group and integrable hierarchies 5845 

some progress was made in [ 10,111. The construction of systems of modified KdV type can 
be done without any reference to a gauge freedom, while the presence of a non-trivial gauge 
freedom is a crucial ingredient in the construction of the KdV-type systems in [l]. In the 
unpublished work [ 111, the reduction procedure of [I]  was generalized in order to obtain 
generalized Miura maps for associating KdV-type systems with those of modified KdV type. 
It was also realized in [ I l l  that the semisimple element and the gradings involved in the 
generalized DrinfeldSokolov reduction must satisfy a certain non-degeneracy condition, 
which is required for the existence of the global polynomial gauges that define the KdV 
fields as in [l]. More recently, the ideas of [7] were resurrected and made concrete by de 
Groot et ai [12-151 taking advantage of the theory of non-equivalent graded Heisenberg 
subalgebras in the affine Lie algebras developed by Kac and Peterson 1161. In 1121 it was 
suggested to use any graded element A with non-zero grade from any Heisenberg subalgebra 
of an affine Lie algebra in a generalized DrinfeldSokolov reduction procedure. Such an 
element A is automatically semisimple and in 1121 two types of systems, called type I and 
type II, were distinguished according to whether A is regular or non-regular. The notion of 
regularity is defined below. In the type I cases it is possible to verify the existence of the 
polynomial gauges (‘DS gauges’) required for the construction of Kdv-type systems. This 
in general is not so in the type ll cases and has to be imposed as an extra condition for 
obtaining KdV type systems. 

In fact the approach used in [I?.] is almost the same as that used [I l l .  In the set-up 
of [I21 the semisimple element A can have any non-zero grade, but in the most interesting 
cases when A has grade 1 the two methods almost always coincide. Indeed in the case 
of the classical simple Lie algebras we are aware of no exceptions. An advantage of the 
approach used in [ 121 is that it incorporates a universal definition of the gauge group which 
is applicable to any graded semisimple element A and implies the existence of polynomial 
gauge fixings if A is regular. 

According to the above. one can associate generalized KdV systems with certain graded 
semisimple elements of the affine Lie algebras that include the regular elements of minimal 
non-zero (say positive) grade taken from the non-equivalent graded Heisenberg subalgebras. 
It appears a reasonable strategy to first explore the systems that may be associated with the 
non-equivalent regular semisimple elements of minimal grade. Progress in this direction 
was reported in [17,18], where the case of the affine Lie algebra t(gi,) was considered. 
In this case the graded Heisenberg subalgebras are classified by the partitions on n [16,19] 
and it was verified in [ 171 that only the partitions of n into sums of equal numbers, n = s p ,  
and into sums of equal numbers plus one, n = s p  + I ,  admit a graded regular element. 
A generalized DrinfeldSokolov reduction based on a grade 1 regular element from the 
Heisenberg subalgebra associated with the partition n = sp was analysed in [17] and was 
found to lead to the matrix version of the Gel’fand-Dicke hierarchy given by Lax operators 
of the form 

L = Qap + U l a p - ’  + . . . + ~ , _ ~ a  + u p  ui E c”(sl, gi,) (1.3) 

where Q is a diagonal constant matrix with distinct, non-zero entries. In the case n = sp+ 1 
the analogous Drinfeld-Sokolov reduction (see [IS]) yields a hierarchy associated with a 
more exotic-looking s x s matrix Lax operator: 

(1.4) L = ~ a p  + U l a p - l  + . . . + up - y+(a + w)-]Y: 

where the fields ui vary as in (1.3), y* E Cm(S1, C’) and w E Cm(S’, C). For the history 
of this model and for related recent developments on Kdv-type hierarchies, the reader may 
consult [ZC-251, in all of which methods different to those in [17,18] were used. 
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In none of the abovementioned papers had it been realized that a classification of the 
graded regular semisimple elements of the affine Lie algebras can be extracted from known 
results. We now explain this in the non-twisted case. Let 8 be a complex simple Lie 
algebra. Disregarding the central extension, we recall from [I61 that the graded Heisenberg 
subalgebras of the non-twisted loop algebra t (8)  are classified by the conjugacy classes 
(see [26]) in the Weyl group W(8) of 8. It is also clear from the construction in [16] 
that the graded regular elements in a Heisenberg subalgebra, gie c t(8) associated with 
the conjugacy class [w] c W(8). correspond to the regular eigenvectors of the Weyl 
transformation w E [w] acting on the Cartan subalgebra 1.1 c 9. In [27] the conjugacy 
classes in the Weyl group whose representatives admit a regular eigenvector (an eigenvector 
whose centralizer in 8 is 1.1) are themselves called regular. The regular conjugacy classes 
in the Weyl groups were then all classified by Springer 1271. This yields a classification 
of the graded regular semisimple elements of !(GI, since every such element is contained 
in a graded Heisenberg subalgebra. Although this classification is not yet complete, since 
there are ambiguities in choosing the grading of t(8) associated with a conjugacy class 
[w] c W(G), because the construction involves lifting a representative w E [w] to a finite- 
order inner automorphism CJ = exp (2in ad X) of 8, we shall see that a natural choice exists 
for every regular conjugacy class. 

In this paper the above classification of the graded regular semisimple elements of the 
loop algebras e(8) will be developed and applications will be considered, concentrating on 
the classical simple Lie algebras. In addition to the theory of integrable systems, our work 
is also motivated by the relations between integrable hierarchies and various other subjects 
of two-dimensional theoretical physics, W-algebras and ?D gravity models being prime 
examples (e.g. 128-331). An important question for us is to clarify the relationship between 
generalized KdV hierarchies and W-algebras, which is well known in the original Drinfeld- 
Sokolov case. We will be able to associate a KdV-type hierarchy with every grade 1 regular 
element from a graded Heisenberg subalgebra of t ( G )  in such a way that the second Poisson 
bracket of the hierarchy gives a classical W-algebra associated with a corresponding slz 
subalgebra of 8. The set of W-algebras arising in this way is a small subset of the standard 
W-algebras associated with arbitrary s l ~  embeddings [30,31]. Our result on the W-algebra 
structures corresponding to the KdV systems is consistent with the results in 1151, where a 
W-subalgebra was exhibited in the second Poisson bracket algebra for a certain class of 
generalized KdV hierarchies. By the method of [ 12,131, these hierarchies are associated 
with a graded semisimple element A subject to a certain non-degeneracy condition, which 
is satisfied in all the cases that we shall consider. 

Before describing the content of the paper in more detail, it is worthwhile to recapitulate 
the essence of the use of a graded regular semisimple element of non-zero grade to integrable 
systems in technical terms. An element A of a non-twisted loop algebra t (G) ,  where 8 is 
a simple Lie algebra or gl, ,  is called semisimple if it defines a direct sum decomposition 

(1.5) t(8) = Ker(ad A) + Im(ad A). 

By definition, a semisimple element A is regular if Ker(adA) C t ( G )  is an Abelian 
subalgebra. The Z-grading in which A is supposed to be homogeneous with non-zero grade 
is defined by the eigenspaces of a linear operator dN.y : t(8) -+ t(G),  

d 
dh dN.y = Nh- + ad Y 

where N is a non-zero integer and Y E 9 is diagonalizable with integer eigenvalues in the 
adjoint representation. If one has such an element, then Ker(adA) is a graded, maximal 



The Weyl group and integrable hierarchies 5847 

Abelian subalgebra. Note also that adY defines a grading 8 = e&; of 8. The most 
important graded regular semisimple elements are of small grade taking the form 

with some C* E 8.  ( 1.7) 
The integrable hierarchies of our interest are given by Hamiltonian flows on a phase space 
consisting of first-order differential operators L of the type 

(1.8) 

where QG); c !(E) is the grade I eigensubspace of dN,y and k 0 is the grade of A. 
In addition to being restricted to grades strictly smaller than the grade of the leading term 
A, the field j in (1.8) is usually also subject to further constraints (e.g. it often varies 
in 8 C t(8) only) and to a gauge freedom specific to the system. Since the field j 
is periodic (being a function on the space SI), one can consider the monodromy matrix 
of L. The point is that under the above assumptions one may obtain commuting local 
Hamiltonians from the monodromy invariants determined by the 'Abelianization' of L 
[1,7,9,11, 121. This Abelianization is essentially a perturbative diagonalization which is 
achieved by transforming L (1.8) according to 

(1.9) 

A = C+ + hC- 

L = a + j + A with j : S' -+ xt(8)i 
i c k  

(a + j + A )  H eadF (a t j + A )  := ( a t  h + A) 

where F and h are infinite series required to take their values in appropriate graded subspaces 
in the decomposition ( I  .5): 

F : SI -+ (Im(ad A))<o h : S' -+ (Ker(ad A))<k . (1.10) 

In fact, the above assumptions ensure that (1.9),(l.l0) can be solved recursively, grade by 
grade, for both F ( j )  and h ( j )  and the solution is given by unique differenfialpolynomials 
in the components of j .  The local monodromy invariants are the integrals over S' of 
the graded components of the resulting h ( j ) .  In an appropriate Hamiltonian setting, these 
provide the Hamiltonians that generate a hierarchy of commuting evolution equations. 

Sections 2, 3 and 4 are devoted 
to presenting some Lie algebraic results relevant for the classification of generalized 
KdV systems. In section 2 it is explained that the classification of the graded regular 
semisimple elements of a loop algebra t(8) can be reduced to the classification of the 
regular eigenvectors of representatives of the conjugacy classes in the Weyl group W(8) 
of 8 thanks to results in [16]. The solution of this classification problem which is due to 
Springer [27], is summarized in tables 1, 2 and 3 of section 3 for a classical simple Lie 
algebra 8. 

In section 4 we describe a connection between the regular conjugacy classes in W(8). 
with associated grade 1 regular semisimple elements in t(8), and certain si2 subalgebras in 
the classical Lie algebra 8. For every regular conjugacy class [U] c W(8) of order m, we 
shall exhibit a lift G of a representative w E [ w ]  having the form 

(1.11) 

where 10 is the defining vector 134) of an $12 subalgebra of 8 and the largest eigenvalue 
of ad IO is (m - I). The order of the inner automorphism G of 8 is vm, where v is 1 or 
2 depending on whether ad 10 has only integral or also half-integral eingenvalues. Actually 
U = 1 in almost all cases. Using this G in the Kac-Peterson construction of the graded 
Heisenberg subalgebra, fi3 c t (8)  associated with [U] c W(8). induces the Z/v grading 
on t(8) defined by the operator d,,,,, = mh(d/dh) + ad IO. This is the natural gading 
of t(G) which we associate with [ w ] .  We then show that every graded regular element 

The rest of this paper is organized as follows. 

G = exp (2irr ad Io/m) 
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A E %a of minimal positive grade, in fact dm,,o grade 1, has the form (1.7), where C+ can 
be included in an slz subalgebra also containing IO. That is there exists I- E B for which 
[Io, I+] =&I*, [I+, I-] = 210 holds with I+ := C+ contained in A = (C+ + hC-). 

The above connection between regular conjugacy classes in W(8) and slz subalgebras 
in 8 generalizes and in many cases is implied by the classical result of Kostant [35] on the 
connection between the Coxeter class in W(8) and the principal slz subalgebra in 8.  In 
the main text we shall take B to be a classical Lie algebra, but in the appendix we discuss 
the connection between regular conjugacy classes in W(G) and s l ~  embeddings in 8 for 
an arbitrary simple Lie algebra too. In the algebras F4 and E6,,,8 we find that (m - 1) in 
(1.11) is smaller than the largest ad IO eigenvalue in some cases, but the equality holds for 
every regular primitive conjugacy class. As will be clear from our references, we do not 
claim credit for original group theoretic results. However, by inspecting and systematizing 
a number of isolated results, we will be able to formulate and verify interesting general 
statements, which are worth knowing but which to our knowledge are not available in the 
literature. 

We turn to the application of the above results to the construction of KdV type integrable 
hierarchies in section 5. In subsection 5:l we associate a KdV-type system with every 
grade 1 regular semisimple element A E 'Ha. This hierarchy will be obtained by a direct 
generalization of the standard DrinfeldSokolov reduction. We assume that the largest 
eigenvalue of ad IO equals (m - 1) in (1.1 I), which is always satisfied if B is a classical 
simple Lie algebra or Gz. The second Poisson bracket algebra of the resulting generalized 
KdV hierarchy is then the W-algebra 130,311 belonging to the slz embedding defined by 
IO. In subsection 5.2 we derive Gel'fand-Dicke-type Lax operators for a subset of the 
generalized KdV systems. These systems correspond to conjugacy cIasses in the Weyl group 
of a classical Lie algebra given by the product of Coxeter elements in a regular subalgebra 
composed of A- and C-type simple factors. They turn out to be 'discrete reductions' of 
generalized KdV systems related to 81, given by Lax operators of the form in (1.3) and 
(1.4). In section 6 we briefly comment on non-Abelian affine Toda systems and present 
the detailed form of the non-Abelian affine Toda equation corresponding to the regular, 
primitive (semi-Coxeter) conjugacy class @, 7) c W ( D l p ) .  

Finally, we give our conclusions and comment on some open problems in section 7. 

F Delduc and L Fehkr 

2. Heisenberg subalgebras and  the Weyl group 

Let G be a complex simple Lie algebra. Consider the Lie algebra e(g) of Laurent 
polynomials, t(8) := G 8 C[h,  A-'], in the spectral parameter 1. For any graded regular 
semisimple element A E L(8). Ker(ad A) C t (8) is a graded maximal Abelian subalgebra, 
which becomes a Heisenberg subalgebra upon centrally extending t ( G ) .  In order to find the 
graded regular semisimple elements of t(B), it is therefore enough to inspect the maximal 
Abelian subalgebras of l(8) that underlie the graded Heisenberg subalgebras of the central 
extension Bof Qi), and select those which contain graded regular elements. With respect 
to the adjoint action of an aplropriate group associated with t (G),  the non-equivalent graded 
Heisenberg subalgebras of 8 are classified by the conjugacy classes in the Weyl group of 
8 [16]. See also [36,37] for the precise statement. Next we recall the main points of the 
construction on which this classification is based. Note that, by disregarding the central 
extension, a maximal Abelian subalgebra of !(E) will often be referred to as a Heisenberg 
subalgebra throughout the text. 

Suppose that li c G is a Cartan subalgebra and r is a jni te  order, inner automorphism 
of g that normalizes li. Consider the following models of QG) and its twisted realization 
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e(G, ?): 

(2.1) 
E(G)  = tFiF : R --f G, F ( e + w  = F(QI 
t ( g ,  r )  = (f I f  : R --f G, f@ + 2 ~ )  = ?(f(e)) I. 

Since z is inner, l ( G )  and l ( G ,  T) are isomorphic [6,38]. To see this one writes ? as 

r = e  Z n d X  x = Y / N  (2.2) 

where N is the order of r ,  r N  = id, and Y E G is diagonalizable. The choice of Y is not 
unique, The isomorphism q : t(G, r )  -+ l ( g )  is given by 'untwisting' as follows: 

m e ) ) .  (2.3) q : f w F  ~ ( 0 )  := e-iBadX 

The 'twisted homogeneous Heisenberg subalgebra' t(1-I. r ) ,  
t w ,  r )  = ( f l  f : R --f 1-1, f ( e  +210 = ? m e ) ) )  (2.4) 

is a maximal Abelian subalgebra of t(G, ?). The image 7& := q[t(?f ,  r)] of the twisted 
homogeneous Heisenberg subalgebra is a maximal Abelian subalgebra of &7). The 
natural grading on t (G ,  r )  is the homogeneous grading defined by the eigensubspaces of 
d : t (G,  ?) --t K G ,  r), 

d 
de 

d := -iN--. 

The isomorphism q induces a corresponding grading operator dN.y : l ( G )  + t ( G ) ,  
d 

dA 
d N . y  := q o d  o q-' = NA- +adY (2.6) 

where we used the definition A := e'#. The maximal Abelian subalgebras E(%!, ?) C t ( G ,  5 )  

and f i r  c t ( G )  are of course graded. 
Recall (e.g. [38]) that Weyl group W(G) of G may be identified as the group of inner 

automorphisms of G that normalize 71 modulo the inner automorphisms centralizing 1-I. It is 
also well known that any w E W(g) may be, in general non-uniquely, lifted to afmite-order 
inner automorphism 6 of G which reduces to w on 1-I, &lx = w .  It follows that one can 
associate a graded maximal Abelian subalgebra, 7& c t ( G ) ,  with any element w E W(G). 
To construct 7& c t ( G ) ,  one first lifts w E [ w ]  and then performs the above construction 
using 2 in place of ? in (2.1)-(2,6), Despite the ambiguities involved, it can be shown 
[16,36,37] that conjugate elements of W(G) give rise to equivalent graded Heisenberg 
subalgebras and the non-equivalent ones are classified by the conjugacy classes in W(G). 

We now need to construct a graded basis of tgi, &). This is done as follows. The 
eigenvalues of & on G are of the form 2 with 

o := exp (2ialN) (2.7) 
where N is the order of &, A basis of g consisting of eigenvectors of & may be given in 
the form (HE,,] U (RE,%) with 

~ ( H I , , )  = W'HX,, HE,, E 1-I and S(Rc.%) = o'R1,% Rc.% E 'HI (2.8) 

that is by separately diagonalizing 6 on the Cartan subalgebra 'H (where it reduces to w )  
and on its complementary space 'HI c g spanned by the root vectors. The index qp 
similarly G, counts the multiplicity of the corresponding eigenvalue, which can also be zero 
of course. The desired graded basis of t ( G ,  &) consists of the elements 

zkH~.% and zhR1.= where z := exp @IN) k = imcd N. (2.9) 

- 
and k E (0, 1, . . . , ( N  - 1)) 
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By definition, a graded element zk HE,% E t ( H ,  6)  c t(G, G )  of grade k is regular if 

F Delduc and L Fehh 

W , G )  3 Ker (adz’HT.,) = t(Z. G ) .  (2.10) 

It is easy to see that (2.10) is equivalent to 

G 3 Ker (ad Hx,.) = X. (2.11) 

Equations (2.10) and (2.11) refer respectively to infinite- and finite-dimensional Lie algebras. 
Using standard terminology in the finite-dimensional case, H E 71 is by definition regular 
if its centralizer in G is H. Hence the equivalence of (2,IO) and (2.11) means that 
Z‘HZ,~  E t (Z,  G )  is a regular semisimple element of e(g, 12) if and only if HE,% E 71 
is a regular semisimple element of G. In principle, this simple statement should make it  
possible to find all graded regular semisimple elements of t(G). 

In order to find the graded regular semisimple elements of t(G), one needs to select 
the conjugacy classes [U)] c W(G) for which the graded maximal Abelian subalgebra 
g; c t ( G )  contains a graded regular element. By the isomorphism between t(G, &) and 
t(G) that brings e(%. G )  into ’& and the statement above, this problem is equivalent to 
selecting the conjugacy classes in W(G) whose representatives admit a regular eigenvector. 
A conjugacy class with this property is called a regular conjugacy class in [27], where all 
such conjugacy classes have been listed. 

Remark. It is apparent from the above construction of the Heisenberg subalgebra ‘Fie c 
t(G) associated with [U)] C W(G) that !he corresponding grading of t ( G )  depends on the 
choice of the finite-order inner automorphism G used for defining the lifi of a representative 
w E [U)]. As the grading plays a crucial role in the Drinfeld-Sokolov construction. a 
clarification of this ambiguity, in terms of the classification of finite-order automorphism 
due to Kac [6,38], would be desirable. This problem will not be addressed in the present 
paper. Rather, in section 4 and in the appendix. a distinguished lift having the nice properties 
in (1.11) will be exhibited for every regular conjugacy class in the Weyl group. 

3. Regular conjugacy classes in the Weyl group 

The conjugacy classes in the Weyl group are described in [261 for all simple Lie algebras, 
and the regular conjugacy classes (which admit a regular eigenvector) are described in [27]. 
In  this section we recall the relevant resulu of [27] in the form of tables for the classical 
simple Lie algebras, which will be used in our applications later. In these tables we shall 
also present the explicit form of the regular eigenvectors for convenient representatives of 
the regular conjugacy classes. The eigenvectors are not given in 1271, but can be easily 
computed. As a matter of fact the classification of the regular conjugacy classes can also 
be derived straightforwardly by explicitly diagonalizing a representative for each conjugacy 
class and inspecting the eigenvectors. In our study we originally used this ‘brute force’ 
approach, but after leaming of the elegant work of Springer [27] this explicit inspection 
became superfluous and will not be presented, apart from some remarks. By means of the 
natural scalar product. the Cartan subalgebra 71 c G will always be identified with the space 
of roots 71‘ in this section. 

3.1. Regular conjugacy classes in W ( A . - , )  

The Cartan subalgebra of A,-, may be identified with the subspace of the vector space 
spanned by n orthonormal vectors q. 1 = 1 , .  . . , n which is orthogonal to the vector Cy=, 
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The roots of A,-, are the vectors E I  - GI,, l # 1‘. An element 

of the Cartan subalgebra is regular if and only if for any two distinct indices I and l’, 
hc # hp. The Weyl group W(A,-]) is the permutation group of the n vectors €1. The 
conjugacy classes in W(A,-]) are in one-to-one correspondence with the partitions of n,  

(nl, ..., ns)  k n t = n  (3.2) 

where the nk (k  = 1, . , . , s) are non-increasing positive integers giving the length of the 
cycles inside a given conjugacy class. To describe the action of a representative w of the 
conjugacy class associated with the panition (3.2). it is useful to re-label the basis vectors 
as follows: 

k= 1 

The action of w on these basis vectors may be chosen to be 

w ( C k . 1 )  = E k , q  W ( 6 k . B )  E k J - I  i k  # 1. (3.4) 
Since w does not mix vectors corresponding to different cycles, one obtains a basis of 
eigenvectors by considering each cycle separately. Let us focus OUT attention on the kth 
cycle of length nk, and define u k  := ezinlne. The eigenvalues of w on the space spanned 
by the vectors  EX.^^ ( i k  = 1.. . . , n k )  are ( W k ) ” ,  jk = 0, .  . . , nx - 1, and the corresponding 
eigenvectors, denoted as Hjk (k ) ,  are 

4 
H,A ( k )  = ~ ( u k ) ( i l - ’ ) j i ~ k , ~ ,  . 

I F 1  

One can look for a regular eigenvector of w in the form 

(3.5) 

The eigenvalues of w on those Hjk(k)  for which dk # 0 must be equal, and h! # hp must 
hold for any distinct indices when re-expanding H (3.6) in  the form (3.1). These conditions 
lead to the result summarized in table 1. Note that gcd(p, j )  denotes the greatest common 
divisor of p and j ,  and in the case j = 0 (gcd(p, 0) = 1) the condition C d k  = 0 must 
also be imposed for the eigenvector to belong to the Cartan subalgebra of A,-]. 

3.2. Regular conjugacy classes in W ( D J  

The Cartan subalgebra of D. may be identified with the vector space spanned by n 
orthonormal vectors €1,  I = 1, , . . , n. The roots of D. are the vectors &E, & E L , ,  1 # 1’. 
An element H = EL1 hit, of the Cartan subalgebra is regular if and only if for any two 
distinct indices 1 and 2‘. hr f f h p .  The Weyl group W ( D J  consists of the permutations of 
the vectors €1 and the sign changes of an arbitrary even number of them 1261. A so called 
‘signed partition’ of n can be associated with each conjugacy class, 
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Conjugacy class Eigenvector Eigenvalue Regularity conditions 

where n l ,  . . . , n, (n,+l,. . . , n, )  is a sequence of non-increasing positive integers which 
are the lengths of the positive (negative) cycles. The number of negative cycles s - r is 
even. It is shown in [26] that a unique conjugacy class in W(D, )  is associated with such 
a signed partition, except when all cycles are positive of even length, in which case the 
same partition corresponds to two distinct conjugacy classes. To describe the action of a 
representative w of the conjugacy class associated with the signed partition (3.7). we follow 
[39] and introduce the adapted basis vectors 6k.it ( k  = 1.. . . , s, i k  = 1,. . . , nk) similar to 
(3.3). The action of w on these basis vectors may be chosen to be: 

W ( 6 t . 1 )  6k.nx W ( € k , g )  €t,it-l i k  # 1 if 1 < k < r (3.8) 

and 

w(ck.1) = -6k ,nh w(6x. i ' )  = E X . ~ ~ - I  it # 1 if r .e k < s. (3.9) 

In the case of a signed partition with only positive even cycles, a representative w' of the 
second conjugacy class may be chosen to differ from w (3.8) in the first cycle only, where 
it contains two sign changes: 

W'(61.1) = -El,", W'(El.2) = -61.1 w ' ( 6 1 . i ~ )  = cl.il-l il # 1,2. (3.10) 

In fact, the conjugacy class of w' is not regular. If H j ( k )  and f i j ( k )  denote a basis of 
the eigenvectors of w on the space spanned by for k = 1, . . . , r and for 
k = r + 1, . . . , s, respectively, then the general eigenvector H takes the form 

. . . , 

(3.11) 

where the eigenvalues of w associated with the terms with non-zero dk must be equal. 
The eigenvector Hji(k) .  with eigenvalue (Wk)j' for j k  = 0, . . . , nk - I ,  is given in (3.5). 
Introduce the notation I& := eZnfbr. The eigenvector Qj,(k),  with eigenvalue (Gk)*Ik-l for 
j k  = 1.. . . , nk, is defined by 

(3.12) 

As can be verified by inspecting equation (3.11), the regular conjugacy classes [27] and the 
corresponding regular eigenvector are the ones given in table 2, where q is an integer. 
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3.3. Regular conjugacy classes in WfB,,) 

We identify the Cartan subalgebra of B. or C, with the vector space spanned by n 
orthonormal vectors 61, 1 = 1 , .  . . , n .  The roots of B, are rtq 5 elr, 1 # 1‘ and &:R. 
Those of C, are k.q k @, 1 # I’ and k2q. Thus an element H = hltl of the Cartan 
subalgebra is regular if and only if for any two distinct indices I and 1’, h, # fh l ,  and 
for any 1, hl # 0. The Weyl groups of B. and C,, are isomorphic, they consist of the 
permutations of the basis vectors 61 and the sign changes of arbitrary subsets of them. The 
conjugacy classes of these groups [26] are in one-to-one correspondence with the signed 
partitions of n: 

WCC,) 

where nl, . . . , n, @,+I,. . . , n,) is a sequence of non-increasing positive integers which are 
the lengths of the positive (negative) cycles. The only difference from the 0, case is that 
there is now no limitation on the number of negative cycles. A representative w of the 
conjugacy class labelled by the signed partition (3.13) is obtained using the same equations 
(3.8), (3.9) as in the 4 case. The supplementary requirement that for any 1, hl j4 0, simply 
prohibits the appearance of a cycle of Length one not contributing to the eigenvector H in 
(3.1 1). The result is summarized in table 3, with the same notation as in table 2. 

The regular conjugacy classes in the Weyl .group of an exceptional simple Lie algebra, 
and in the group obtained as the extension of the Weyl group by the automorphisms of the 
Dynkin diagram, are also listed in 1271. The classification of regular conjugacy classes in 
the extended Weyl groups can be used to find graded regular semisimple elements in the 
twisted affine Lie algebras, similar to the role of the Weyl group in the non-twisted case to 
which our attention is restricted in this paper. 
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4. Heisenberg subalgebras with graded regular elements and sZ2 embeddings 

In section 2 we saw t.hat the graded Heisenberg subalgebras of the non-twisted loop algebra 
t(8) are classified by the conjugacy classes [ w ]  in W(8). and the graded regular elements 
in the Heisenberg subalgebra 7?; c [(E) arise from the regular eigenvectors of w E W(8). 
For I; a classical Lie algebra, the conjugacy classes in W(8) listed in the tables of section 3 
parametrize those Heisenberg subalgebras that contain graded regular elements. In this 
section we describe a relationship between these Heisenberg subalgebras and certain slz 
subalgebras of 8. This relationship consists of two points. First, in the cases when g; 
contains a graded regular element, the grading dN,y of t(8) induced using the appropriately 
lifted Weyl group element 12 in the construction of section 2 takes the form 

d 
dA 

dm.,o = mA- + ad IO (4.1) dN,Y = vdm,ro 

where Io E g is the semisimple element of an sl2 subalgebra {Z-, lo,  I+] C 8 in the 
normalization 

[io, 14 = SI, [ r+ ,  1-1 = 21~. (4.2) 

Here w = 1 or 2 depending on whether 10 determines an integral (even) or a half-integral 
s12 subalgebra of 8, and ( m  - 1)  is the largest eigenvalue of ad Io on 8, Second, for any 
graded regular element A E 7?; of minimal positive grade, which has the form 

A = C+ -k AC- with some C* E 8 (4.3) 

we show that C+ is the raising element ofan slz subalgebra containing IO. That is there 
exists I-  E 8 such that (4.2) holds with I+ := C,. The dm,r0 grade of A is one. These 
statements provide a generalization of the well known relationship between the principal 
Heisenberg subalgebra and the principal $12 embedding, which underlies the W-algebra 
structure of the Kdv-type hierarchies of Drinfeld and Sokolov [I]. In subsection 4.1 
we present a convenient method for constructing explicit realizations of the Heisenberg 
subalgebras, which will be used to verify the above statements in subsection 4.2. 

of 
w E [ w ] .  A construction of the appropriate lift will be given for any regular conjugacy 
class [ w ]  c W(8). 

The correspondence between certain slz subalgebras in 8 and certain conjugacy classes 
in W(G) has been investigated in the mathematics literature h m  various viewpoints. The 

It should be emphasized that the above statements refer to a particular lift 
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connection of the above mentioned statements to related results in 135.27.401 will be 
explained in subsection 4.2. See also the appendix. 

4.1. A practical algorithm for constructing Heisenberg subalgebras 

Recall that the principal Heisenberg subalgebra of t(0) is associated with the conjugacy 
class in W(0) consisting of Coxeter elements [6]. The Coxeter class is one of the so called 
primitive conjugacy classes of W(G), which are characterized in [16,411 by the condition 
that det(1 - w) = det(d) for a representative w ,  where A is the Cartan ma'uix of 0. 
In [40] the term 'semi-Coxeter' classes is used to denote the primitive conjugacy classes. 
The most intuitive defining property of these conjugacy classes is that they do not possess 
a representative contained in a proper Weyl subgroup of W(0). The Weyl subgroups of 
W(5) are the Weyl groups of the regular semisimple subalgebras of 5. For the algebras A., 
B,, C, and Gz the Coxeter class is the only primitive conjugacy class 1261. Concretely, it is 
the class of the cyclic permutation (n + 1) for W(A,) and that of the negative cycle 0 for 
W(&) N W(C,). For W(D.)  the situation is more interesting. The primitive conjugacy 
classes are those containing two negative cycles, @I, T i z )  for any n, >, raz >, 1, nt +nz = n, 
and the Coxeter class is that of n2 = 1. The classification of the conjugacy classes in W(0) 
described in [26] is closely related to the classification of the regular semisimple subalgebras 
of 5 treated by Dynkin [34]. In fact, it has been shownt in 1261 that each conjugacy class 
of W(0) can be (in general non-uniquely) represented by an element w E W(0) of the 
product form 

(4.4) 
where wk belongs to a primitive conjugacy class in the Weyl group W ( h )  of the simple 
factor G k  (k = 1, . . . , r )  of a regular semisimple subalgebra of 5, 

w = w ,  . WZ'. , w, 

51 + 52 + ' '  ' f 5 r  C 5. 

'H = 311 + HZ + .  .. + H ,  + H' 

(4.5) 

(4.6) 
where 31~ is a Cartan subalgebra of Gk and w acts as the identity on the subalgebra H' c 'H 
which is orthogonal to 'Hk for k = 1, . . . , r and satisfies rank 0 = (E, rank'&) + dim 'H'. 
For the conswuction of the corresponding Heisenberg subalgebra, one needs to lift w to a 
finite-order inner automorphism B of 0. Clearly, the required lift can be taken to have the 
form 

(4.7) 
where x k  E G k  defines an appropriate lift I?& of wk to a finite-order inner automorphism of 
0k 

Gk = exp (2in ad X,)  x k  E G k .  (4.8) 
Below X k  will be given explicitly. We are interested in the graded Heisenberg subalgebra 
'??]io = q[!('H, B)] c t(5) associated with B. The twisted homogeneous Heisenberg 
subalgebra !(X, 6) c C(0, G )  in (2.4) obviously has the direct sum structure 

(4.9) 

(4.10) 

The Cartan subalgebra H c B on which w given in (4.4) acts is a direct sum 

G = exp (2iz ad X )  x = x ,  + x z  +," + x, 

m, 6 )  = t('Hl. GI) t t ( ' H z ,  $2) t " ' + t ( 'Hrn , ,  6,) t e(%'). 

%]io = 7&,& + RZ.6 + ' ' ' + %,& + !('H') 

Using & in (4.7), the 'untwisting' 9 in (2.3) induces a corresponding direct sum structure 

t This is shown in [261 for any simple Lie algebra including the exceptional ones 
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where g ~ . & ~  c E(Gt)  is the Heisenberg subalgebra associated with the finite-order inner 
automorphism lirt of Gt, and l ( X ' )  = X'@C[A, A-']. This leads to the two-step strategy for 
constructing the non-equivalent graded Heisenberg subalgebras of the loop algebras Qg): 
(i) constmct all of the Heisenberg subalgebras corresponding to the primitive conjugacy 
classes in the Weyl groups of the simple Lie algebras; (ii) the general case is then obtained by 
running over the regular semisimple subalgebras of G and inserting the 'primitive Heisenberg 
subalgebras' from the first step into the factors. Although the presentation of a Heisenberg 
subalgebra provided by this scheme is not unique in general, it is very convenient in practice. 
In particular, this scheme defines a correspondence between the Heisenberg subalgebras of 
l ( G )  possessing a graded regular element and certain regular semisimple subalgebras of 
the Lie algebra 9. In the case when G is a classical Lie algebra, the correspondence is 
summarized in table 4. 

The notation used in table 4 is as follows. A simple factor & appearing in the regular 
reductive subalgebra in the third column of the table represents the Coxeter class of W(&) 
as well as the principal Heisenberg subalgebra of Q&). Concerning the primitive conjugacy 
classes in the 0, case, we recall from table 2 that in addition to the Coxeter class the other 
'extreme case' (is. i7) also admits a regular eigenvector for n = 2p.  The term Tz,, in table 4 
represents the conjugacy class (is, i7) of W(&,) and the respective non-principal primitive 
Heisenberg subalgebra of e(%). The term 1-I;. denotes a Cartan piece of dimension k, 
and its presence means that the subspace f('Hi) of the homogeneous Heisenberg subalgebra 
t ( X )  c t ( G )  is contained in f i ~ .  Since explicit realizations of the principal Heisenberg 
subalgebra of ((G) are known for every simple Lie algebra, an explicit realization of any 
Heisenberg subalgebra appearing in table 4 may be obtained if one constructs one for the 
primitive case &.. This will be provided in subsection 4.2. 
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Table 4. Heisenberg subalgcbras possessing a graded regular element. Here s is the number of 
cycles in the panition. p is a positive inieger md A" = 0. 

Alzebra Coniuaacy class Regular subalgebra Ord(l5) 

4.2. A connection with SI? embeddings 

For any simple Lie algebra G, there exists a celebrated relationship [35] between the Coxeter 
class of W(g) and the conjugacy class of the principal si2 subalgebra of G, whose essence 
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is that the lift of a Coxeter element wc E W(Q) may be chosen as 

(4.11) 

where NC is the Coxeter number and l o  is the semisimple element of a principal SIT 
subalgebra of g. This means that there exists I+ E Q so that 

[ I Q ,  I*] = fl* [I+, I - ]  = 210 (4.12) 

and 10 has the form 10 = 1 zeso Ha, where the H, E Rare the Cartan generators associated 
with a system of positive roots CY z 0 with respect to a Cartan subalgebra c Q. The 
Cartan subalgebra C Q is said to be 'in apposition' to the Cartan subalgebra H c G 
on which wc actst. A consequence of this is that the grading of l(Q) induced by its 
isomorphism with L ( Q ,  &c) is the principal grading defined by 

(4.13) 
d 

d l  d,v& = NcA- f a d  IQ. 

Furthermore. decomposing Q as 
B = Q$Q + Q$ + Q:o (4.14) 

using the (principal) grading of Q defined by adlo, the ,-de 1 regular element A of the 
principal Heisenberg subalgebra '?&? takes the form 

A = C+ + hC- C* E Q with C+ = I+ (4.15) 

i.e. the si2 subalgebra of Q defined by the nilpotent element C+ E Q through the Jacobson- 
Morozov theorem [42] is the same sf2 that enters the grading (4.13). Note also that 

[C-, Ce01 = (01. (4.16) 

The relations expressed by equations (4.11),(4.15),(4.16) play an important role in the 
Drinfeld-Sokolov construction of KdV-type hierarchies and we wish to show that they 
generalize to all cases given in table 4, for which a graded regular element exists in the 
Heisenberg subalgebra. (?le case of the homogeneous Heisenberg subalgebra is related to 
the trivial, identically zero, sl, embedding and is excluded in what follows.) We need to 
deal with the &,, case first, since it occurs as a 'building block' in table 4. 

In order to take care of the 4, case. we make use of a result of I391 on the lift of 
a Weyl group element w m , . ~ ~ )  E W ( D , )  belonging to the conjugacy class @ 1 , 7 i * ) .  In 
subsection 2.6 of [39], a lift I&,,~~) conjugate to 

?@,,E>) := exp (2in ad K I N )  . (4.17) 

where N = Icm(2nl, 2.n~) is the order of ?@,,E*) and 

(4.18) 

was constructed for any nl  +nz = n. We observe that K is the semisimple element of an slz 
subalgebra of D, in the Coxeter case n2 = 1 and in the case nl = n?, and is not proportional 
to such an element in the other cases. This is most easily seen from the spectrum of the 
matrix K in the defining Zn-dimensional representation of D,, taking into account that EK 
( k  = 1,. . . , n) contains two non-zero entries, i l ,  when diagonalized. For n] = n2 = p ,  

t Equivalently, if the principal $12 generator 41 is taken from 'H then &c defined by (4.1 1 )  acts as a Coxeter element 
on the Cartan subalgebra in apposition R, which may be defined as the centralizer of m element ( I +  + C-) E G, 
where C- # 0 is chosen in such a way that [L, C-l= -(Ne - 1 ) C .  
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this explicit form of K also implies that the 4p-dimensional vector representation of Dzp  
decomposes under the slz subalgebra containing K according to 

(4.19) 
According to Dynkin [34], this is one of the singular s/z subalgebras ('S-subalgebras') in 
DzP. (Note that the singular slz subalgebras of [34] are called semi-regular $12 subalgebras 
and the principal sl2 is called the regular slz in some of the literature.) It is interesting that 
the number of conjugacy classes of singular slz subalgebras in D, is actually equal to the 
number of primitive conjugacy classes in U'(D,), but the above lift of wfi,.zz) corresponds 
to an slz embedding only in  the cases when wfi,,z2) admits a regular eigenvector. 

It follows from the above that ?m,s in (4.17) may be used in the construction of the 
sought after Heisenberg subalgebra, denoted as g m . ~ ,  where K is the semisimple slz 
generator corresponding to the decomposition (4.19) of the defining representation of Dz, 
(which defines it up to conjugation). It is convenient to realize Dzp as the subalgebra of 
g / 4 p  consisting of the matrices A subject to A'q+ ~ J A  = 0 with the 4p x 4p  matrix 17 given 
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4 p  = (2p + 1) + (2p - 1).  

by 
Zp+l 2,-1 

9 := ek ,2p+2-k  f eZp+l+k .4p+ l -k  
k= I k=I 

(4.20) 

where e i . j  is the usual elementary matrix with a single non-zero entry 1 at the ij position, 
and to realize the s/z generator K as 

K = diag(p,. . . ,Os. . . , - p .  ( p  - l ) ,  . . . ,O, . . . , - ( p  - I ) ) .  (4.21) 
The appropriate grading of t(D2,) is given by 

(4.22) 

Note also from table 2 that the grade q subspace of '&., must be of dimension 2 if 
q = 1,3,. . . , (2p - 1) modulo 2p, and is otherwise empty. Let us now introduce the 
matrices HI,, and H1.2 in DzP: 

d 
dh 

dZp ,K  = 2ph- + ad K. 

(4.23) 

+ b p a  (e4p.~p+~ - el.zp+z) t bpap+l (edP.i - ezp+1.zp+d 
where a l , .  . . , a,+!, b l ,  . . . , b, E C are arbitrarily chosen non-zero parameters. We also 
need their matrix powers 

q , k  := (H, .k )" - '  f o r j = 1 , 2  , . . . ,  p k = 1 , 2 .  (4.24) 

It can be checked that these 2p matrices commute and span a Cartan subalgebra of Dzp for 
a generic choice of the parameters. We denote this Caaan subalgebra as The point 
is that 'Ha,p) c Dz,, is invariant under the automorphism given in (4.17). and H j , k  is the 
corresponding basis of eigenvectors: 

This implies that ?@.W acts on the Cartan subalgebra ' H G . ~  as a representative of the 
conjugacy class @,B c ~ ( D z , ) .  Performing the 'untwisting' described in section 2 is 
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straightforward, and we get the Heisenberg subalgebra ‘l?~,n C t(D2,) as the span of the 
following graded basis: 

km (Al,k)z’-l f o r m E Z  j = l , 2  ,..., p k = 1 , 2  (4.26) 

where 

(4.27) p-1 P-1 
Ai.2 := brezp+k+l+zp+k+z - bp-ke3p+k.3p+k+l 

k= I k=l 
+b,ai (e4p ,~p+t  - ei.zp+z) + Abpap+i ( e4p ,~  - ezp+l.zptz).  

The basis vector in  (4.26) has grade (Zj - 1) + 2 m p  with respect to the grading dZp.K. This 
construction of ‘&,n was inspired by an analogous construction in [39]. A grade-I regular 
element A E 7 ? ~ , ~  will be a linear combination 

(4.28) 

with generic non-zero coefficients d l ,  dz. Writing A in the form A = C+ + 1C-, C+ has 
grade 1 and C- has grade - ( 2 p  - 1) with respect to ad K .  We wish to show that K and C+ 
axe contained in the same slz subalgebra of Dzp, i.e. that the commutation relations given 
in (4.12) hold with IO := K ,  1, := C+ and some I-  E Dzpr analogously to the principal 
case. 

We need to present an auxiliary result at this point. Consider a regular semisimple 
element A = (C+ + XC-) E PAC), with some Ci. E 9, having definite grade with respect 
to a grading operator dN,K = NXd/dA + ad K .  Suppose that 

[C-, Q:ol = (01 (4.29) 

where G = Gfo + G,f + Q:o is the decomposition defined by means of the eigenvalues of 
ad K .  Then the following ‘non-degeneracy relation’ 

A = diA1.i + dzAi.2 

Ker(adC+) n 9to = {O) (4.30) 

is satisfied. Indeed, if one could find an element U E G:o for which [C,, U] = 0, then 
[A. U ]  = 0 would also hold because of (4.29). Clearly, Ker(adA) c t (9 )  can contain 
only semisimple elements of Q c t(9) ,  but any U E CC0 is a nilpotent element. This 
contradiction proves (4.30). 

The above argument applies to A in (4.28), since (4.29) follows from the fact that 
the grade of C- is the smallest eigenvalue of adK on G = D2p. A consequence of the 
non-degeneracy relation (4.30) is the equality dim[C+. @,I = dim@,. This implies the 
existence of I-  E for which [C+, 1-1 = K ,  since in our case dim9Tl =dim@ holds 
as is easily verified using the explicit formula (4.21) of the grading operator K. The set 
[ I - ,  IO := K ,  I+ := C+) spans the required slz subalgebra. This settles the Bzp case. 

Turning now to the general case, we first rewrite the lift It in (4.7) as 

(4.31) 

where 

(4.32) 



5860 

Here N is the order of 2, Nk is the order of &k when acting on G k ,  Yk = NkXk in (4.8). 
The grading of e(G) corresponding to 
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is defined by the operator dN,Y. 

(4.33) 
d 

dA 
dN,y = NA- + ad Y. 

When restricted to the subalgebra t ( G k ) ,  this grading satisfies 
d 

dh 
(4.34) 

N 
Nk 

dNl,fi = Nkh- t a d  yk dN.YIwi) = -dNi.Yh 

where dNk.yI gives the grading of e(Gk) induced by the isomorphism e(!&) = e(&&, &k). 
Using the lifts of the regular primitive Weyl transformations given in (4.1 1) and in (4.17), 
Yk is the semisimple element of an slz subalgebra of G k  with the same normalization as IO 
in (4.12). Hence it follows from (4.32) that Y is proportional to the semisimple element of 
an slz subalgebra of g if and only if 

Ni = Nj for any i # j .  (4.35) 

Inspection shows that (4.35) is satisfied for all cases in table 4, and therefore 
N 
N I  

Y = -(Y1 + Y z +  ... + Y,)  (4.36) 

where N / N I  turns out to be 1 or 2 depending on whether ( Y I  + Y l +  . . . + Y , )  defines an 
integral or a half-integral slz subalgebra of G, i.e. whether the grading of G defined by this 
element is integral or half-integral. In fact, the sfz embedding is an integral one in all cases 
in table 4 except the case ( p ,  . . . , p ,  I )  with p even for G = AP,$-1>. One also sees that 
any graded regular semisimple element A E 7&, of minimal positive grade ( N J N I )  has the 
form A = C+ + AC-, where I+ := C+ is contained in an s l ~  subalgebra whose semisimple 
element is IO := ( _ N I / N ) Y  given by (4.32). This is a consequence of what we know about 
the principal and DzP cases, simply because such a A is a linear combination of respective 
graded regular elements from the Heisenberg subalgebras c e(&,) in (4.10). With 
respect to the grading of G defined by adlo, the non-degeneracy relation 

(4.37) 

then follows from the slz structure. Inspection shows that [C-, G$o] = {O) is also satisfied 
in each case, since C- is an eigenvector of ad 10 associated with the smallest eigenvalue. 

Let us summarize the results obtained in this section. For G a classical Lie algebra, 
we verified the following connection between regular conjugacy classes in W(G), with 
graded regular elements in the associated Heisenberg subalgebra '& c K G ) ,  and s l ~  
subalgebras in G. For any regular conjugacy class [ w ]  c W(G), the appropriately lifted 
Weyl transformation takes the form & = exp (2irr ad Y / N )  in (4.31), where Y = UIO with 
IO being the semisimple generator of an slz subalgebra of G and U = 1 or U = 2 so that 
ad Y has integral eigenvalues. The largest eigenvalue of ad Y is ( N  - U), where N is the 
order of ti, and m = N / u  is the order of w E [ w ] .  The smallest positive dm,fo grade for 
which a graded regular element A E '& exists is one, and any grade 1 regular element has 
the form A = (C+ + IC-), where C+ is included in an s l ~  subalgebra also containing lo.  
The eigenvalue of ad Io is minimal on C-. Of course ti, acts as the Weyl transformation 
w on the Cartan subalgebra defined by the centralizer of its regular semisimple eigenvector 
given by H := A(A = 1) = (C+ + C- )  E G. 

If U) in (4.4) is a Coxeter element in a regular semisimple subalgebra of 8, the above 
results follow from the result of Kostant [35] on the connection between the Coxeter 

Ker(adI+) n G20 = 10) 
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class and the principal s h  given by formula (4.11). The case of the regular semi-Coxeter 
conjugacy class @,F) c W ( D z p )  was dealt with by inspecting the lift found in [39]. 

We wish to note that in (271 the result of Kostant [35] was generalized to give a similar 
connection between certain regular conjugacy classes in W(G) and those special integral 
slz subalgebras of 9 for which the decomposition of $7 into slz irreducible representations 
contains no singlets and only one triplet. In addition to the principal slz, such $12 subalgebras 
exist only in the exceptional Lie algebras as listed in [27]i. See also the appendix. 

In passing, we also wish to mention the correspondence found in [40] between the 
conjugacy classes of arbitrary singular (semi-regular) slz subalgebras in G [341 and a subset 
of the primitive (semi-Coxeter) conjugacy classes in W(G). This is given in terms of 
an injective mapping from the set of singular slz subalgebras into the set of primitive 
conjugacy classes, which is defined by the coincidence of the so called ‘Carter diagrams’ 
[26] associated with the conjugacy classes in W(9) and to the slz subalgebras in 9. On 
the overlap of their ranges of applicability, the ‘Kostant-type’ correspondence discussed in 
[U], and here for Dzpr and the one in [40] are consistent. It is not clear whether the result 
of I401 has any significance for the theory of integrable hierarchies. 

5. Applications to KdV-type systems 

Now we turn to the application of the results collected in the previous sections to the 
constiuction of integrable hierarchies. For G a simple Lie algebra, fix a grade 1 regular 
semisimple element A from a Heisenberg subalgebra 7&, c QG). Suppose that A has the 
form 

(5.1) A = I+ + hC- 

where I+ belongs to the sfz subalgebra [ I - ,  IO, I,) c G for which d , ~ ~  in (4.1) defines the 
grading of e@). Suppose also that 

[c- I G<OI = 10) with G<O = G (5.2) 
kc0 

where Gh,  denoted in section 4 as GF, is the eigensubspace of ad 10 with eigenvalue k. 
As we have seen, for G a classical Lie algebra the relations in (5.1) and (5.2) are ensured 

by using the lift 6 given in (4.31) for an arbitrary regular conjugacy class [ w ]  c W(G). 
For the exceptional Lie algebras these relations may be assumed in connection with many 
regular conjugacy classes in the Weyl group, which include for example all regular conjugacy 
classes in W(G2) and all of the regular primitive conjugacy classes. It appears that in W(F4). 
W(E6.7.8) there exist some regular conjugacy classes for which (5.2) cannot be satisfied; 
see the appendix, 

Let us recall [30,31] that one may associate a ‘classical W-algebra’ with any sI2 
subalgebra of G by a generalization of the Hamiltonian reduction used by Drinfeld and 
Sokolov to obtain the second (Gel’fand-Dicke) Poisson bracket of their Kdv-type hierarchies. 
In subsection 5.1 we show that if the s l ~  subalgebra is related to a grade 1 regular semisimple 
element A in the above way, which specifies a (small) subset of the non-equivalent s/z 
subalgebras of G, then it is possible to obtain a KdV-type hierarchy from Hamiltonian 
reduction whose second Poisson bracket is the W-algebra defined by the slz-subalgebra. 
Subsection 5.2 is devoted to the concrete description of some of the systems that may be 
obtained from this approach. We analyse the cases when B is a classical Lie algebra of B ,  

t The s 1 ~  subalgebra of GI appearing in table 1 I of [27] has in fact three triplets and not one, but the claims m 
still valid fcn this 511 as is easily seen using that it is actually the principal $11 inside the regular A? c GI. 
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C or D type and the regular reductive subalgebra appearing in the third column of table 4 
contains only A -  or C-type simple factors. The resulting generalized KdV systems turn out 
to be discrete reductions of the systems associated with gl .  having the Gel’fand-Dicke-type 
Lax operators in (1.3) and (1.4). That is the Lax operators of the resulting systems are of 
the form (1.3) or (1.4) subject to certain extra symmetry conditions, very much l i e  the 
well known principal case [I] for the Lie algebra C,, where the Lax operator is of the form 
(1.1) with n = 2p subject to the self-adjointness condition L f  = L. 

F Delduc and L Fehdr 

5.1. KdV systems associated with grade I regular elements 

The following construction is a straightforward generalization of that in [I]. and can also 
be viewed as a special case of the more general construction given in [ I  1-13]. 

After fixing a grade 1 regular semisimple element A E !(G) subject to (5,1),(5.2), 
consider the manifold M consisting of first-order differential operators, 

M := [ L = a + J + AC- I J E Cm ( S ’ , G ) ] .  (5.3) 

The manifold M is the phase space of an infinite collection of bi-Hamiltonian systems. The 
two compatible Poisson brackets (PBs) are given as follows. The ‘second’ PB is given by 
the affine current algebra structure, 

and the ‘first’ PB is given by 

(5.5) 

for f .  h smooth functions on M .  The Hamiltonians of interest are generated by the 
invariants (‘eigenvalues’) of the monodromy matrix T ( J ,  A) of L. The corresponding 
Hamiltonian flows commute as a special case of the Adler-KostantSymes construction 
and are bi-Hamiltonian (see, e.g., [43]) . The Hamiltonians given by the monodromy 
invariants are non-local functionals of J in general. Using that C- in (5.3) is related to the 
regular semisimple element A according to (5.1). we can perform a symmetry reduction of 
the system on M leading to a local hierarchy. 

Let G be a connected Lie group corresponding to G. Define the subgroup Stab(C-) 
of G by gC-z ’  = C- for g E Stab(C-). Denote the group of smooth loops based on 
Stab(C-) as Stab(C-) := Cm (SI, Stab(C-)). The possibility for reduction rests upon the 
fact that there is a Poisson action (meaning that it leaves the PBs unchanged) of Szb(C-) 
on M given by 

(a + J + AC-) H g(a + J + ~c-)g-’ = g(a + ~ ) g - ’ +  AC- v g E sZb(c-) 
(5.6) 

which leaves the monodromy invariants-unchanged. For present purposes we consider 
reduction based on the subgroup N of Stab(C-) whose Lie algebra is Cm (SI, G,o). The 
reduction is defined by first imposing constraints on M so that the constrained submanifold 
M c c M i s  

(5.7) 
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That is the constraints defining M c  c M restrict J to have the form J = ( j  + Z,) with 
Z+ in (5.1). The second step of the reduction is to factorize M ,  by the group N of ‘gauge 
transformations’ acting according to 

e’ : L H e’&-’ V e’ E N  with f E Cm (SI, B,o). (5.8) 
Standard arguments show that the compatible PBS on M induce compatible PBS on 

the space of gauge invariant functions on M , ,  identified as the space of functions on the 
reduced space Me,j = M J N .  Thanks to the non-degeneracy relation in (4.37). the gauge 
fixing procedure of [ I ]  is applicable to obtain a basis of the gauge invariant differential 
polynomials on M c ,  which may be used as coordinate functions on M J N .  The gauges 
resulting from this procedure are often called ‘DS gauges’ (see, e.g., [31]). A particular 
DS gauge is the so called lowest weight gauge [44], whose gauge section M I ,  C M ,  is 
defined as 

MI, := { L = a + A, + A 1 jlw E Cm (SI, Ker(ad I-)) 1 . (5.9) 
In terms of the one-to-one model of M c / N  furnished by the global gauge section MI,,  the 
reduced second PB is given by the Dirac bracket algebra of the components of jl, induced 
from (5.4). This Dirac bracket algebra is just the classical W-algebra of [30] (see also [31]) 
associated with the si2 subalgebra {I-, ZO, I+) c B. 

A generalized KdV hierarchy of bi-Hamiltonian flows is generated on the reduced space 
M c / N  by the commuting Hamiltonians provided by the local monodromy invariants of 
C, which are determined through the Abelianization procedure described in equations 
(1.9), (1 .IO). 

The hierarchy on Mred resulting from the above ‘DS-type’ symmetry reduction [ 11 often 
possesses a residual symmetry that may be used to reduce it further. Define the subgroup 
G R  of Stab(C-) by 

G R  := Stab (C-) n Stab (I+) n Stab (I-) , 

E R  = Ker (ad C-) n Ker (ad I + )  n Ker (ad I-) 

(5.10) 

Let {To] denote a basis of the Lie algebra GR of G R ,  

(5.11) 

In fact the subgroup & := Cm (S’, G R )  of Szb(C-) survives the os-type symmetry 
reduction. Taking M I ,  as the model of M , / N ,  the residual 6 symmetry acts as 

(3 + jl, + A) H g(3 + jlw + A)g-’ = g(3 + jI,)g-’ + A V g E r R .  (5.12) 

These transformations leave invariant the compatible PES and the commuti% Hamiltonians 
constituting the KdV-type system on MI,.  At the infinitesimal level, the G R  symmetry in 
(5.12) is generated through the second (W-algebra) PE by the components tr(T, jl,) of jl,, 
that is by the subset of the slz singlet components of jl, annihilated by ad C-. 

Another interesting 
possibility, which is important in examples as we shall see later, is the presence of a 
discrete symmetry. This occurs for instance in the following situation. Let y : B --f B be 
an involutive automorphism with a corresponding involution r : G -+ G. In the obvious 
way, extend y to an involution of QB). Suppose now that A is a grade 1 regular semisimple 
element of e @ )  which is y-invariant, y ( A )  = A, and the grading is also invariant, 
y ( l0 )  = IO. Suppose furthermore that the fixed point set BY c B is a simple Lie algebra. 
(All classical Lie algebras are fixed point sets in gl,, or sin, for appropriate y , )  The 
Heisenberg subalgebra := Ker(ad A) of e(B) is an invariant subspace of y ,  and the 
fixed point set fii c f i ~  is a Heisenberg subalgebra of e@‘). We can now perform the 

The residual symmetry in (5.12) is a continuous symmetry. 
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above DS reduction leading to a KdV-type hierarchy using the same element A and either a 
system based on 0 or one based on B Y  as the original system. 

In the former case we start with the bi-Hamiltonian manifold M in (5.3), introduce the 
constrained manifold M ,  in (5.7), and end up with MEd = MJN. The natural action of 
y on M ,  given by 

F Delduc and L Fehkr 

y : (a + J + ACJ H (a + Y(J) + ACJ (5.13) 

leaves invariant the compatible PBS on M .  Since M ,  is mapped to itself by y and also N is 
mapped to itself by r as y preserves the grading, the action (5.13) induces a corresponding 
action of y on M,a. On account of y ( l - )  = I - ,  which may be assumed by choosing I-, 
the gauge section M I ,  of the N orbits in M,, defined in (5.9), is mapped to itself by y in 
(5.13). Hence in terms of the model M a  of MEd the induced action is simply given by 

(5.14) 

The action on MEd = M , / N  Y M I ,  given by (5.14) leaves invariant the compatible 
PBs induced from those in ( 5 4 ,  (5.5) by means of the DS reduction. Recall that the 
Hamiltonian densities yielding the commuting Hamiltonians of the KdV-type hierarchy on 
Mxd are the components of h ( j )  E %A defining the 'Abelianized' form (a + h ( j )  + A) 
of C. = (a + j + A) E M,. The uniqueness property of the Abelianization procedure in 
(1.9),(1.10) implies the equality 

Y : (a + ] I l v  + A )  n (a + ~ ( A J  + A). 

h ( y o ' ) )  = Y W ) )  (5.15) 

which means that the Hamiltonians corresponding to the components of h ( j )  in 'l?; are 
invariant, and those corresponding to the eigenvalue -1 of y on the Heisenberg subalgebra 
RA are 'anti-invariant' (change sign) under the action of y .  Since the PBs are y-invariant, 
the Hamiltonian flows on MIcd generated by the y-invariant Hamiltonians preserve the 
fixed point set M L  c Mrd of y .  (The 'anti-invariant' Hamiltonians vanish on the fixed 
point set and the Hamiltonian flows defined by them are transverse to it.) Therefore we can 
define a hierarchy on Mhd by restricting the flows of the hierarchy generated on M,d by 
the y-invariant Hamiltonians to MLd. The flows of the resulting hierarchy are Hamiltonian 
with respect to the compatible PBS on the space MLd N M L  obtained from those on MI, 
by restricting the PBs of the y-invariant components of j , , ,  which may be regarded as 
coordinates on M L ,  to this fixed point set. We refer to the reduction procedure just given 
as 'discrete reduction'. 

Using the gauge group Nr whose Lie algebra is Cm (SI, 8:o), we can also perform 
the above discussed os-type reduction of the system on MY, 

(5.16) 

The system on MY consists of the compatible Poisson brackets, defined similarly to (5.4) 
and (5.5) using G Y  in place of 8, and the monodromy invariants:Here the invariant scalar 
product 'tr' on B Y  c 8 is taken to be the restriction of that on 8.  Clearly, the system on 
MY may be obtained by discrete reduction from the system on M. The discrete reduction 
of M to MY induces the discrete reduction of Mred to MLd. We then have the following 
result. 

Proposition 5.1. The hierarchy on M L  defined as the discrete reduction of the hierarchy 
on M,n is the same as the hierarchy obtained from the DS-type reduction of the system 

MY = ( I :  = a t J t i c -  [ J  E C " ( S ~ , 8 ~ ) } .  

on MY-using the regular semisimple element A E l (V) and the gauge group i(ir = 
exp (cm (SI, 8:o)). 
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0 

The commutativity of the diagram comprising the two DS-type reductions and the 
respective discrete reductions does not depend on using the models of the Ds-reduced 
systems provided by the respective lowest weight gauges, since the reduced systems 
have gauge independent meaning. One usually has other convenient gauges as well for 
describing KdV-type systems and their ‘modified’ versions. Another possibility which is 
often applicable is not to use any gauge at all for this purpose, but rather encode the 
gauge invariant information contained in the first-order differential operator L E M ,  in a 
corresponding higher-order (pseudo-)differential operator. This will be illustrated by the 
examples in subsection 5.2. In those examples the KdV system associated by DS reduction 
with a grade 1 regular semisimple element in the loop algebra of a classical Lie algebra, 
realized as BY for G = gl”, will turn out to be a discrete reduction of a hierarchy based 
on gd,. In the above G was assumed to be a simple Lie algebra, but of course the whole 
construction applies equally to G = gin. 

Proof: The statement follows by an elementrary ‘diagram chasing’ argument. 

5.2. Examples: Lar operators of Gel’fand-Dicke fype 

A traditional method for describing Kdv-type systems that has proved fruitful in the past is 
to find a Gel’fand-Dicke-type model, where the gauge invariant dynamical variables of t!!e 
system are encoded in a higher-order (pseudo-)differential Lax operator L. The operator L 
is usually derived by an ‘elimination procedure’ (see, e.g., 11, 17,441) applied to the linear 
problem L+ = 0 for L E M,. The purpose of this subsection is to derive the Gel’fand- 
Dicke-type pseudo-differential Lax operators for a subset of the generalized Kdv hierarchies 
resulting from the approach discussed in subsection 5.1. We shall restrict ourselves to the 
cases for which 0 is a classical Lie algebra and the regular reductive subalgebra involved 
in the construction of the Heisenberg subalgebra of t(G) contains only A- or C-type simple 
factors, see table 4. The reason for this restriction is that the elimination procedure proves 
straightforwardly applicable in these cases. The cases involving the subalgebras 9, with 
the conjugacy classes @, 7r) C W(Dz,) appear more difficult and are set aside for future 
work. It will turn out that the Lax operators obtained from the eliminitation procedure may 
also he derived by suitable restrictions from those related to gl,, given in equations (1.3) 
and (1.4). The restriction consists of requiring the invariance of the Lax operator under 
some involutive discrete symmetry. Proposition 5.1 will be used to identify the Poisson 
brackets and the commuting Hamiltonians of the hierarchy in terms of the Gel’fand-Dicke 
model. We shall study the C, and B,  algebras in some detail, and essentially give the 
results for 0,. 

5.2.1. Notation Throughout this subsection, we use the 2 x 2 matrices U ,  r defined by 

(5.17) 

and the p x p matrices Yp,  qp defined by 

p - 1  p - 3  3 - p  1 - p  
( q p ) i j  := &,p+l-j V p > 1. (5.18) - 2 ’ 2  -1 Y p  := diag (7, - 

2 ’”. ’  
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For a p x p matrix p .  F. := qpp'qp is the transpose of p with respect to the antidiagonal. 
As also displayed in (1.2), we have the regular semisimple element A, E t (Ap- , ) ,  

F Delduc and L Fehtr 

P-I 

A, := he,,i + x e i . i + l .  (5.19) 
i = l  

For any p > 1 and s E N, we fix some non-zero di E C (i = I ,  . . . , s )  satisying 
(di)p # (dk)P for i # k (compare with table I), and introduce the diagonal matrices 

A := -D- ' .  (5.20) DO := diag (dl , . . . , 4 )  
The r x r identity matrix is denoted by I, for any integer r 1. Finally, the 
adjoint Lt of some matrix pseudo-differential operator L = is by definition 

1 D := diag (DO, -50 

L+ := &,,(-a)%4ky. 

5.2.2. Negative cycles in Cpp We first consider the algebra C,, with the conjugacy class of 
W(C,,) associated with the signed partition @, . . . ,n. This conjugacy class corresponds 
to the regular semisimple subalgebra (C, + . . + C,) c C,, in table 4. Following the 
scheme outlined in subsection 4.1, we first introduce the 2p x 2p symplectic matrix 522,. 

i f i < j  I '  -1  if i j .  
52zP := u €3 qp that is (522Jil = ~ ( i ,  j ) & , ? , + l - j  ~ ( i ,  j )  = 

(5.21) 

The 2ps x 2ps symplectic matrix R used to define C,, c gZzps is given by 
52 := 1, €3 52zP = diag(522,. . . . ,522,). (5.22) 

According to (4.1) the grading operator is d 2 , , ~ ~  with the 2ps x 2ps diagonal matrix 

We also need the grade 1 regular semisimple element AZ", E QC,) given by 

IO := 1, €3 YzP = diag(Yzp, . . , , YgP). (5.23) 

(5.24) 

A grade 1 regular semisimple element A E t(Cp,) is then furnished by 

A = DO €3 A& = diag (dt At,, . . . , d,A&). (5.25) 

Let us perform the change of basis that gives rise to the permutation P on the indices 
of the 2ps x 2ps matrices, 

P ( u ( p + i )  :=2s(i  - 1 ) + k +  1 1 Q i  Q 2p (5.26) 

This amounts to exchanging the factors in the tensor products above, i.e. in the new basis 
the symplectic matrix is written as 52 = 52zP €3 l,, the grade 1 regular semisimple element 
reads A = A& €3 DO, and the grading matrix becomes IO = Y2,8 l$. It will be convenient 
that the entries of IO are non-increasing along the diagonal. 

Now we derive the Lax operator for the KdV system following on from the DS reduction. 
For this we apply the definitions of the constrained manifold M c  in (5.7) and the gauge 
group N in (5.8) to the case at hand. We then consider the linear problem for L: E M,, 
that is the equation 

L @ = ( ( a + j + A ) @ = O .  (5.27) 

0 Q k Q s  - 1. 
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Here @ = (*;, K. ... , +ip)' is a 2ps-vector and the pi (i = 1. .  . . ,2p) are s- 
vectors. Equation (5.27) is covariant with respect to N if we complement (5.8) with the 
tansformation rule 

e f : * w e f @  Vef E N .  (5.28) 

Notice that the transformation in (5.28) leaves the component @I invariant, because f is 
now given by a 2ps x 2ps block-triangular matrix having s x s zero blocks on and above 
the diagonal. It convenient to proceed by restricting L E M ,  to the block-diagonal gauge, 
where j is defined to have the form 

j = diag(B1, . . . , 8 T P )  (5.29) 

with 
e, E cm(sl, gi,) = -0; V i =  1, ..., 2p. (5.30) 

Inserting j in (5.29) into (5.27) yields the system 

(a + e iw i  + D ~ @ ~ + ~  = o 
(a +e,)+, - D ~ $ , + ,  = o 

i = I ,  . . . , p  

i = P + I, ... ,2p - I (5.31) 
(a + e2p)*zp + mo*l = 0. 

Upon elimination, this system leads to the eigenvalue equation 

L*l = w i  (5.32) 

(5.33) 

(5.34) 

where L is the s x s matrix differential operator of order 2p  given by 

L = ( - l ) P + ' D i ' ( a  + 0zp)DL'(a +&,-I) ,. , D i ' ( a  +et). 

L H i := DiIL'Do. 
As a consequence of (5.30), L is invariant with respect to the operation 

If we use an expanded form of the Law operator L,  we have 

(5.35) 

where the K d v  fields U k  E Cm(S1,gL) satisfy U; = ( - l )kuk by the invariance property 
L = L. 

Since the above elimination procedure can be reversed, equation (5.32) encodes all gauge 
invariant information contained in the original linear problem (5.27). It is easy to see that 
the KdV fields uk in (5.35) are related by an invertible differential polynomial substitution 
to the entries of the gauge fixed current in the lowest weight gauge of (5.9). The fields 8, in 
(5.33) are the dynamical variables of a 'modified' version of the KdV hierarchy. Expanding 
the factorized operator (5.33) yields a generalization of the well known Miura map. 

The KdV system having the Lax operator L in (5.35) may be interpreted as a discrete 
reduction (in the sense of subsection 5.1) of  a KdV system based on 81. for n = 2ps. In 
fact, the subalgebra C,,, of glz ,  is the fixed point set of the involution y : gl,,,, + gi*p8 
defined by 

(5.36) 
and the element A E t ( C p , )  c t ( g h p s l  given in (5.25) is also a grade 1 regular semisimple 
element of t (glzPs) (and of t (Azps-l)) .  From this point of view A is associated with the 
partition (2p, . . . ,2p)  of n = 2ps representing a regular conjugacy class in W(A2ps-I). 
Performing the DS reduction using ghPs instead of C,, leads to a KdV system whose 

y : x H y(X) := -n-'x'n v x E glzps 
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Lax operator has the form in (5.35). but with arbitraty E Cm(S', g&). n t e  related 
modified KdV system is given by the operator (5.33) with unrestricted 0, E Cm(S', gi,). 
Proposition S. 1 and what is known about the g l .  case [17] enables us to give a more detailed 
description of the present generalized KdV hierarchy in the Gel'fand-Dicke framework. We 
next explain this in detail. 

Let M be the manifold of Lax operators L of the form in (5.35) with arbitrary KdV fields 
Uk E Cm(S', gl , ) .  Recall from [17] that the compatible PBs on M, regarded as a model of 
the OS-reduced space M,d associated with g&, are the standard first and second matrix 
Gel'fand-Dicke ms 12-41 defined respectively by 
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{fa. f~i" '(L) = Tr(L ([A+. B+1- [A-,  E-]) )  (5.37) 

(5.38) I ~ A ,  fs)"'(L) = Tr(BL(AL)+ - N L A ) + L ) .  

Here Tr is the Adler trace [4] of matrix pseudo-differential operators (PDOS) given by 

(5.39) 

For an arbitrary PDO A, we use the splitting A = A + + A -  into parts containing non-negative 
and negative powers of a, respectively. In equations (5.37), (5.38) fa is the linear function 
on M defined by f , ( L )  := Tr(AL) for any fixed s x s matrix PDO A. 

We have the discrete symmetry given by the Poisson mapping 

p : M --f M p ( ~ )  := i = D,-'L~D,,  v L E M. (5.40) 

The symmetry is induced from the action (5.13) of y in  (5.36) on the constrained manifold 
of the DS reduction considered for g&. This is easily seen with the aid of the corresponding 
block-diagonal gauge, whose gauge section is mapped to itself by y .  The phase space of 
the 'discrete reduced' hierarchy is the fixed point set Mi. c M of 9. Proposition 5.1 
implies that the induced PBs on the fixed point set Mp, which is a model of M;$, are 
given by equations (5.37) and (5.38), where A and B have to be restricted to PDOS that are 
antisymmetric with respect to the transformation p. Indeed, if ?(A) := D;'AtDo = -A, 
then ~A(P(L)) = faW). 

The commuting Hamiltonians of the hierarchy on M induced by the DS reduction may 
be obtained as follows [17]. First one has to diagonalize L E M in the algebra of PDOs, i.e. 
for any L one has to determine a diagonal PDO L d :  

L~ = (-i)p+lD;zpa*p + C n t a 2 P - k  

for which 

L = gLdg-l g = 1, + gka-' with gk an off-diagonal matrix V k. (5.42) 

By equations (5.41), (5.42). L&) and g(L)  are uniquely determined (differential 
polynomial) functions of L E M. The commuting Hamiltonians are then provided by 

m 

with ax a diagonal mahix V k (5.41) 
k=I 

m 

k=l 

Ho,i(L) := lt ( U 1 ) i i  V i = l ,  ..., s (5.43) 

Hx,,(L) := ll res ( L d ( L ) ) t / 2 p  V i = 1 ,  . . . , s k = 1,2, . . . (5.44) 
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where (L,j(L))1'2p is a fixed Zpth root of Ld(L) .  Thanks to the uniqueness property of 
the diagonalization procedure in (5.41), (5.42) and the identity Tr(At) = - Tr(A), we can 
verify 

(5.45) 

According to proposihon 5.1, the commuting Hamiltonians of the discrete reduced 
hierarchy on MI Y MLd are furnished by the restrictions of the ?-invariant Hamiltonians 
on M LT M,d. We see from (5.45) that the invariant Hamiltonians are now the Hk, , (L)  
for k any odd natural number. This completes OUT description of the PDO model of the 
generalized KdV hierarchy following from DS reduction in the case @, . . . , C W(Cp,).  
The result is analogous to the s = 1 'scalar case', for which the Cp-type DS hierarchy is the 
self-adjoint reduction of the glzp-type Gel'fand-Dicke (n-KdV for n = 2p) hierarchy [l]. 

H ~ J  (p ( L ) )  = ( - l ) k + l H k , j ( L )  V i = I ,  ... . s  k = 0, 1,. . . . 

5.2.3. Positive cycles in Cps. We now turn to the case of positive cycles of odd length, 
( p ,  , . , , p )  with p = 2q + 1, in C,. The regular semisimple subalgebra associated in 
table 4 with this conjugacy class of W(C,,) is (Ap-!  + . . + A p - l )  c Cp, The symplectic 
matrix S2 is still given by (5.22). The grading of t (Cps)  is now defined by the operator 
dP,,@ with lo := 1% 8 Yp.  Using equations (5.17)-(5.20), the grade 1 regular semisimple 
element A E t (C,)  is given as A = Do 8 5 0 A,. 

Let us perform the permutation 

l < i < p  O < k < s - l .  I P(2kp + i )  := Zs( i  - 1) + k + 1 

P(2kp + p + i )  := 2si - k 
(5.46) 

After this permutation, the symplectic matrix writes as $2 = ~ , @ $ 2 ~  and the grading matrix 
becomes lo = Y, 8 12, which has non-increasing entries along the diagonal. Finally, with 
D given in (5.20), we have 

(5.47) 

As in the previous case, we consider the linear problem (5.27). Now the 2ps-vector @ 
in terms of the 2s-vectors $i for i = 1 , .  . . , p. In the 

A = A, 8 D .  

is decomposed as @ = (pi, . . . , 
block-diagonal gauge j has the form 

j = diag(O,, . . . , ep )  
with 

(5.48) 

e, E cm ( s l , g i h )  e, = -nhe;+l-is-2G1 v i = I ,  .. . , p .  (5.49) 

(a + + = o 1 4 i G p - I  
(a + ep)@p + AD@., = 0. 

Combining (5.27) with (5.47).(5.48), we obtain the system 

(5.50) 

By elimination, we then get the eigenvalue equation L@l = A@l, where the 2s x 2s matrix 
Lax operator L is given by 

L = a(a + e,). . . a(a +e1) (5.51) 

with A defined in (5.20). On account of (5.49) and 522A'Q;' = -A, L in (5.51) is 
invariant with respect to the transformation 

L H i := A Q ~ L + Q ; ~ A - ~ .  (5.52) 
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If we write the Lax operator in expanded form as 
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P 
L = A p a p  4- A z ( u k a P - k  4- aP+u k) 

k= I 
(5.53) 

then the invariance property L = i yields ux = ( - l ) k S 2 i & 2 , ' .  
In a manner similar to that of the previous example, we see that the Kdv system 

possessing the Lax operator in (5.53) is a discrete reduction of a system of the type in 
(l.3), which is based on gl. with the partition ( p . .  . . , p )  of n = 2ps.  It follows that the 
compatible PES of the KdV system obtained from the DS reduction are given by (5.37), (5.38), 
where A and B have to be restricted to PDOs that are antisymmetric with respect to the 
discrete symmetry in (5.52), 

AQaAtQG'A-' = - A  AQaBtSIG'A-' = -B. (5.54) 

Before the discrete reduction, i.e. on the space of Lax operators of the form in (5.53) but 
with arbitrary coefficients uk E Cm(S',glzp,), the commuting Hamiltonians are H o , ~ ( L )  
defined as in (5.43) and Hk,i(L) defined by 

Here (L,J(L))'/P is a fixed pth root of the diagonal PDO Ld(L) determined analogously 
to (5.42). Choosing the leading term of (Ld(L)) ' /P to be Ai?, we find the transformation 
propew 

Hk, i ( i )  = -Hk,%+I-i(L) v i = 1. .. . , 2 S  k = 0, 1,. . . . (5.56) 

Therefore the Hamiltonians of the KdV system based on glzPs that are invariant with respect 
to the discrete symmetry in (5.52) are furnished by 

f f&(L) := Hk.i(L) - Hk,&I-i(L) 'd i = 1, .. . , S  k = 0, 1 , .  . . . (5.57) 

As a consequence of proposition 5.1, the Hamiltonians obtained by inserting the Lax operator 
L in (5.53) into (5.57) coincide with those resulting from 'Abelianization' in the OS reduction 
realization of the generalized KdV system associated with ( p ,  . . . , p )  C W(Cp,) .  

5.2.4. Positive cycles in Dp,  The case of positive cycles of odd length, ( p ,  . . . , p )  with 
p = Z q  + 1. in W(D,J  is very similar. We end up with a Lax operator L that has 
the factorized form in (5.51), where the matrices 9i now satisfy 0, = -(,+I+. Thus the 
invariance property of L is 

i = L for L H i := A V ~ L ~ V ~ A - ~ .  (5.58) 

The expanded form of the Lax operator can be written as in (5.53), where the 2s x 2s 
matrix KdV fields uk are now subject to U k  = ( - l ) k i k .  This KdV system is another discrete 
reduction of the system based on gI, with the partition ( p ,  . . . , p )  of n = 2ps.  The PBS 
of this system following from the DS reduction can be obtained from the Gel'fand-Dicke 
PBs in (5.37),(5.38) by restricting A and B to be antisymmetric PDOs with respect to the 
transformation in (5.58). me commuting Hamiltonians can be characterized analogously to 
the preceding example. 
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5.2.5. Positive cycles in Epp Now we deal with the case of positive cycles of odd length 
( p ,  . . . , p )  c W(Bp,). p = Zq + 1. The corresponding regular semisimple subalgebra is 
given by (Ap- ]  + + Ap-l) C Bps. The (2ps + 1) x (2ps + 1) matrix 7 defining the 
E,,-invariant symmetric form can be taken to be 

The grading of W,,) is defined by the operator Q ' ~ , , ~  with 

Io:=( 1*@Yp 0 o )  

The relevant grade 1 regular semisimple element A E e(&,) can be written as 

(5.59) 

(5.60) 

(5.61) 

See equations (5.173-(5.20) for notation. 
Let us change the basis using P in (5.46) to permute the first 2ps indices together with 

the prescription P(2ps + 1) := 2ps  + 1 for the last index. The matrix of the symmetric 
form left invariant by BPp c g1zpr+t then becomes 

The grading matrix reads 

The grade 1 regular element takes the form 

(5.62) 

(5.63) 

(5.64) 

In the linear problem (5.27) the vector + may now be decomposed as ~ = 
(+;, , . . , +;, @)', where the qi ( i  = 1,. . . , p )  are 2s-vectors and @ is the last component of 
@. We now define the 'block-diagonal' gauge by reseicting the (2s + 1) x (2s + 1) matrix 
valued field j E Cm(S', Bps)  in L. = (a + j + A) E M ,  to have the form 

j =  (5.65) 

The non-vanishing entries of j in (5.65) have grade zero with respect to lo in (5.63) and 
satisfy 

6i = -&+l-i 6, E cm(gl*, s') v i  = 1 . .  . . , p 
(5.66) 

b ,  c E Cm(S', C*) c = -qab .  
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Substituting (5.64),(5.65) into (5.27), we obtain the system 
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(8 -k &)$i  + D$;+I = 0 i = I , .  . . , q.  q + 2.. . . ,29 

(5.67) (a + e q + l ) ~ 9 + l  + D P ~ + ~  + w = o 
(a + +  AD+^ = o 
a4 + C V ~ + ~  = 0. 

The component 4 may be eliminated using the last equation, which yields 

@=-a-  + 9+l .  (5.68) 

Plugging (5.68) back into (5.67), further elimination leads to the eigenvalue equation 

L*I = htll (5.69) 

where L is the following 2.v x 2s matrix pseudo-differential operator: 

L = A(a + e,). . . A(a + eq+dh [a + - ba-V] ~ ( a  +e,). . . h(a + el). (5.70) 

Because of (5.66). L in (5.70) has the invariance property 

i = L for L H i := A ~ ~ L + V ~ A - ~  (A = - D - I ) .  (5.71) 

The Lax operator given by (5.70) can be written in expanded form as 

(5.72) 

U k E C m ( S 1 , g i b )  U k = ( - l ) ' &  v k = l ,  . . . , p  
(5.73) 

Z+, z- E C-(St, C2) z- = -ll2rz+. 

The above Lax operator can also be derived by performing the elimination on the 
linear problem (5.27) in a DS gauge. For this it is convenient to consider the gauge 
section M D ~  c M ,  which by definition consists of the first-order differential operators 
L =  ( a  + j D s + A )  with 

j,s := (5.74) 
up-1 - up -Up-{ "' -& -cl 

t z- 

where uk E Cm(S1,glb) subject to vk = ( -1 ) ' f ik .  and z* are given in (5.73). The gauge 
section M m  is a one-to-one model of the reduced space M d  = M ,  fN following on 
from the DS reduction in the present case. The fields q in (5.74) and the ut in (5.72) are 
related by an invertible differential polynomial substitution, but the field z- appears only 
in quadratic combinations in the expression (5.72) of L.  This means that the manifold of 
Lax operators L in (5.72) is now nof a one-to-one model of the space Mrd. A convenient 
parametrization of MEd is furnished by the set of all pairs ( L + , z - ) ,  where L+ is the 
differential operator part of L in (5.72) and z -  E Cm(S1, C2). This is somewhat similar 
to the situation found in [ 11 for the principal case of the Dn algebras, for which the Lax 
oparators are skew-symmetric scalar pseudo-differential operators having a negative part of 
theformza-'z withzECm(S1,C). 



The Weyl group and integrable hierarchies 5873 

Finally, we note that the above KdV system associated by DS reduction with the conjugacy 
class ( p ,  . . . , p )  C W(Bp,) can be viewed as a discrete reduction of a KdV system based on 
gizps+l with the corresponding partition ( p . .  . . , p.  l ) ,  where p = 2q + 1 occurs 2s times. 
The phase space of the system based on g l ~ p s + ~  consists of the quadruples (L+,  y+, y - .  w )  
appearing in (1.4). The PBs and the commuting Hamiltonians are described in these variables 
in [18]. 

5.2.6. Positive cycles plus a I-cycle in D,,+r. The case of positive cycles of odd length 
p = 2q + 1 plus a 1-cycle ( p ,  . . . , p .  1) c W(Dps+l)  resembles the last one. Without 
entering into details, let us give the form of the ( 2 p s  + 2) x (2ps  + 2) matrix valued field 
j in the 'block-diagonal' gauge, 

(5.75) 

Here the 0, ( i  = 1, . . . , p )  are 2s x '2s matrices satisfying 0, = -gp+1-i, b and c are 
rectangular 2s x 2 matrices related by c = -q>bqz, and d is a 2 x 2 matrix constrained by 
d = -d. The corresponding pseudo-differential Lax operator L is given in factorized form 
as 
L = ~ ( a  +ep) .  . . A @  + eq+?)A [a + - b(a + d)-'c'] ~ ( a  + e 9 ) .  . . A(a + e l )  

(5.76) 

with A in (5.20). The operator L in  (5.76) enjoys the invariance property (5.71) and can 
be expanded as 

where the 2s x 2s matrices satisfy ut = (-1)'Gk and the rectangular 2s x 2 matrices z+ 
and z -  are related by z -  = - q b z + q z .  

The generalized KdV system at hand is related to a system based on B := gln with 
the partition ( p . .  . . , p ,  1 , l )  of n = 2ps + 2 by means of an involution y : G + ~7 for 
which B Y  = DP8+1. If there are more than one extra 1-cycles contained in the partition 
n, then graded regular semisimple elements do not exist in the corresponding Heisenberg 
subalgebra of e(@,). However, in the cases ( p ,  . . . , p ,  1, . . . , 1)-with an arbitrary number 
of I-cycles-the DS reduction still goes through without any difficulty using a grade 1 
semisimple element from the Heisenberg subalgebra. The resulting KdV-type hierarchies 
are studied in [18]. 

6. Some remarks on non-Abelian Toda systems 

In section 5 we associated generalized ~ d v  systems to grade 1 regular semisimple elements 
of e(g). Far completeness, below we wish to present the well known definition of 
corresponding 'non-Abelian affine Toda' systems, and work out an example. 
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To obtain a non-Abeliant affine Toda model, consider a grade 1 and a grade -1 regular 
semisimple element, A and x, from some non-principal Heisenberg subalgebra of e@). 
The grading is given by the operator dm.r0 in (4.1). For simplicity we here assume that ad Io 
has only inregral eigenvalues. Similarly to equations (5.1), (5.2), for A and x given by 

A = I+ + XC- A = 7- i- A-'F+ (6.1) 

IC-, G<Ol = lo1 [F+.  G>Ol = (0). (6.2) 
The non-Abelian affine Toda equation is a relativistically invariant field equation for a field 
g(x, t )  that varies in a connected (non-Abelian) Lie group Go generated by the grade zero 
Lie subalgebra GO c G. It is postulated to be the zero curvature equation 

[L+, c-I= 0 (6.3) 

(6.4) 

(6.5) 
This is a deformation of the non-Abelian conformal Toda equation obtained from (6.5) 
by omitting the second term on the right-hand side, The model admits two infinite series 
of conserved local currents, which may be obtained with the aid of the Abelianination of 
Lx = L+ - L- and ix := E+ - E - .  respectively, where the operators 

t+ := a+ + g ~ g - l  E -  := a- - a-gg-' + K  (6.6) 
enter the alternative zero-curvature representation 

[E+ ,E-I  = o  (6.7) 
of the field equation (6.5). 

The models defined by (6.1)-(6.4) are special cases of those proposed by Leznov and 
Saveliev in [SI. They are distinguished by the applicability of the Abelianization procedure 
described in (1.9),(1.10). It is well known [1,7,9,10, 11,121 that infinitely many conserved 
local currents also exist in the non-Abelian a f h e  Toda models associated with grade f l  
semisimple, not necessarily regular elements from e(B). In general the conserved local 
currents are labelled by the basis elements of the centre ofthe centralizer of A (K)  with 
non-positive (non-negative) grades. 

Suppose that we consider a regular conjugacy class of the Weyl group that has the 
product snucture in (4.4). The corresponding Toda model will then have the interpretation 
as a 'coupled system' containing the Toda systems associated with grade f I regular elements 
from the primitive Heisenberg subalgebras f i k j , ,  c t ( B k )  for k = 1, . . . , r (see equations 
(4.4)-(4.10)), which are coupled together by means of certain extra fields. The extra fields 
correspond to the part of GO outside the regular semisimple subalgebra given in (4.5). It 
is easy to see that the extra fields can be consistently set to zero in the field equation 
(6.5), which then reduces to a decoupled set of Toda equations associated with the primitive 
conjugacy classes [wkl  c W(Gk). 

We now wish to elaborate the non-Abelian affine Toda equation (6.5) for the two negative 
cycles case 0.7) in DlP for any p 2 2. The motivation for considering this series of 
examples is that for the classical Lie algebras @. i i)  c W(Dzp)  are the only conjugacy 

t The Abelian a h e  Toda model is related to lhe principal Heisenberg subalgebra as is well known. 

- 
we suppose that 

with 

C+ := a+ + g-la+g + A C- := a- + g- I- Ag 

where a, := (a, f a,). More explicitly, the field equation (6.3) reads 

a-(g-'a+g) = [I+, g-lT-gi + [c-,g-'T+gi. 
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classes of the Weyl group which are regular, primitive and different from a Coxeter class. 
Choosing all constants ai. 6; in (4.27) to be 1 for simplicity, the grade 1 gencrators of the 
corresponding Heisenberg subalgebra are 

k= I 

and the grade -1  generators, L 1 . i  - h-1(Al.i)2p-1, are 

These formulae are valid in the basis where the symmetric form 0 and the grading K are 
given by (4.20) and (4.21), and it is convenient to permute the basis so that in the new basis 
they take the following block-form: 

(6.10) 

According to the grading defined by K ,  we can write all matrices in a ( 2 p  + 1) x (2p + 1) 
block-form, with the various blocks being 2 x 2 matrices and 2-component column 
or row vectors, respectively. In order to write down the grade &l regular elements 
A = d ~ A l , l  +dzA2,1 and 1\ : = ~ I A - I , ~  + ~ ~ A - I , Z ,  it is useful to introduce 

K = diag (P. ( p  - 1)12 . .  . ., -(P - 1)1z, -P) 
0 = antidiag(1, 1 2 . .  . . , 1 2 .  1). 

(6.11) 

and 

Using this notation, in the new basis we have 

(6.13) 

(6.14) 
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We write the group element g E GQ in the block-diagonal form 
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(6.15) 

where gl,gZp+l E GL(1) and gk E GL(2) otherwise, with the condition 8'78 = 7 
translating into 

(6.16) g2,+2-I = &;I)' for l = 1 , .  . . , p + I. 

Then the non-Abelian affine Toda equation (6.5) takes the form 
t -1- --I* t -I a-&;Ia+gl) = B  g2 Pgl -g ,  [Y (g2) 01 

a-(g;'a+g2) = ~ ~ g ; ~ E ~ g ~  - g;'pglpf - g;lzg;Iut 
a-(g;la+gk) = Dogk+,Dogk - g;'%k-iDo 

(6.17) 
-1 - 2 < k 4 p + 1 

where g;i2 = g;.. The conformal Toda equation corresponding to equation (6.17) can be 
obtained by dropping the terms containing a and E. The simplest version of equation (6.17) 
arises for the Lie algebra Dj, and describes a G L ( 2 )  valued field gz interacting with two 
'scalars' 81 E GL(1) and g3 E O(2). 

7. Conclusion 

In this paper we studied a class of generalized KdV hierarchies associated by Drinfeld- 
Sokolov reduction with regular semisimple elements of grade 1 in the non-twisted loop 
algebras. We made use of the fact that the classification of the graded regular semisimple 
elements in a loop algebra e(G) can be reduced to the known [27] classification of the regular 
conjugacy classes in the Weyl group W(G) of the underlying simple Lie algebra G. The 
regular conjugacy classes in W(G) parametrize the non-equivalent Heisenberg subalgebras 
of t ( G )  containing graded regular semisimple elements. Restricting OUT attention to the 
classical simple Lie algebras, we exhibited a relationship between the regular conjugacy 
classes in W(G) and certain slz subalgebras of G. 

Let [w] c W(g) be a regular conjugacy class of order m for G a classical simple Lie 
algebra. We have seen that there exists a lift ti of a representative w E [ w ]  that takes the 
form ti = exp(2iiradIo/m) in such a way that IQ is the semisimple element ('defining 
vector') of an $12 subalgebra of G for which the largest eigenvalue of ad IO is (m - 1). Any 
regular element A of minimal positive grade from the corresponding Heisenberg subalgebra 
has the form A = (Cl + AC-(,,-i]), where [ I O ,  CK] = kCk and CI can be included in an 
si2 subalgebra containing IO. The grade of A is one with respect to the grading operator 
dm,I0 = mA(d/dA) +ad IQ. 

In the appendix it will be observed that the same relationship is valid between arbitrary 
regular primitive conjugacy classes in Ihe Weyl group and certain sl2 embeddings for 
arbitrary simple Lie algebras. For a non-primitive regular conjugacy class [U] in the 
Weyl group of an exceptional simple Lie algebra different from Gz, in some cases the order 
of w E [w] is smaller than the largest spin plus one with respect to the si? associated with 
[wl. 

Applying the above grouptheoretic results, we provided a link between the generalized 
KdV hierarchies and W-algebras and made a step towards obtaining a more concrete 
description of the KdV systems. In particular, we derived Gel'fand-Dicke-type Lax operators 
for the KdV systems associated with grade 1 regular elements from such Heisenberg 
subalgebras that are contained in a regular reductive subalgebra of a classical Lie algebra 
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B comprising A- and C-type simple factors. In these cases the generalized KdV system 
turned out to be discrete reductions of systems related to gl,, having Lax operators of the 
form given in (1.3) and (1.4). 

The most interesting non-principal case occurring for the classical Lie algebras appears 
to be given by the regular primitive conjugacy class (j7,jJ) c W ( D 4  since the 
corresponding Heisenberg subalgebra is not contained in a regular reductive subalgebra. 
It is an inhiguing question whether the generalized KdV system associated with a grade 1 
regular element with the aid of Drinfeld-Sokolov reduction admits a Gel’fand-Dicke-type 
pseudo-differential operator model in this case or not. Such a model is usually not hard to 
find using the elimination procedure, but for (j7, c W(D2J we have not yet succeeded. 
The corresponding non-Abelian afhe Toda system presented in section 6 would also deserve 
further investigation. 

In this study we used the interplay between the homogeneous grading and the grading 
given by d,,,f0 to define the constraints on the first-order differential operator L = a + j + A 
containing the dynamical variables. It is known [1,7, 11,121 that there are more general 
possibilities: (i) the dm,s grading can be replaced by an arbitrary grading in which A 
has definite grade; (ii) the homogeneous grading can be replaced by another standard 
grading (associated with an appropriate vertex of the extended Dynkin diagram) or a grading 
interpolating between a standard grading and the grading in which A has definite grade. 
See also the remark at the end of section 2. It would be interesting to further explore these 
more general possibilities for obtaining KdV and partially modified KdV systems, which are 
related to the same basic set of modified KdV systems by different Miura maps [1,7,11, 121. 

We wish to remark that in some cases the partially modified systems correspond to 
partial factorizations of a Lax operator that can be factorized into factors of order one, 
not unlike the example when say a fourth-order KdV operator L is partially factorized into 
operators of order two according to 

with 
L = (a + el)(a +&)(a +@,)(a +e4) = L ]  L~ 

L~ = (a + elxa + and L?. = (a  + e3xa  + e4). 
We have restricted our attention to regular elements of minimal grade. According to 

an argument in 112,131, the systems associated with regular elements of higher grade in a 
certain sense should not be new, although the Hamiltonian aspect of this claim is not well 
understood. 

Perhaps the most serious limitation of the present work is that we excluded ‘type 
II’ systems, that is systems associated with graded non-regular semisimple elements of 
t ( g ) ,  from the outset. It is an important open problem to classify the gradings that admit 
graded semisimple elements for which DrinfeldSokolov reduction is possible in the sense 
that polynomial ‘DS gauges’ exist. Some results on type II systems including interesting 
examples can be found in [I 1,15,18,45,46]. In particular, it was recently shown in 1151 
that the phase space of the partially modified systems contains standard W-algebras coupled 
together by the dynamics in both type I and type I1 cases subject to a certain non-degeneracy 
condition. 

It is worth noting that the regular conjugacy classes in the groups obtained as extensions 
of the Weyl groups by diagram automorphisms have also been classified in [27], which is 
relevant for constructing generalized KdV and affine Toda systems based on the twisted loop 
algebras. 

In conclusion, we think the general framework of the DrinfeldSokolov approach is now 
reasonably clear but further work would be needed to fully classify the integrable hierarchies 
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that can be obtained from this approach. For instance, it would be of some interest to further 
explore the KdV systems that may be defined using arbitrary grade 1 regular semisimple 
elements and arbitrary standard gradings and type ll systems also deserve closer anention. 

F Delduc and L Fehh 
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Appendix. Canonical sZ2 for any regular primitive conjugacy class 

The purpose of this appendix is to present a property of the regular primitive conjugacy 
classes in W ( 8 )  that generalizes the celebrated relationship [35] between the Coxeter class 
and the principal slz subalgebra of G. We find this relationship by collecting known results 
in the literature. A larger set of regular conjugacy classes enjoying the attractive features 
of this relationship (properties 1-7 below) will also be pointed out. 

Let 8 be an arbitrary simple Lie algebra. The primitive (semi-Coxeter) conjugacy 
classes in W ( 8 )  are the building blocks of the general conjugacy classes 1261 and the 
regular primitive conjugacy classes are the building blocks of the general regular conjugacy 
classes. The Coxeter class, whose Carter diagram [26] is the Dynkin diagram of 8, is 
the only primitive conjugacy class for the algebras of A, B ,  C and Gz type. The other 
primitive conjugacy classes can be uniquely labelled by the Carter diagrams D&i) for 
i = 1, .. , , 11/21 - 1, F4(al), &(ai) for i = 1,2, .&(a,) for i = 1 ,  .. . , 4  and &(ai) 
for i = I , .  . . , 8. The Coxeter class is always regular. Comparing the characteristic 
polynomials of the primitive conjugacy classes given in [26] with those of the regular 
conjugacy classes given in [27], it can be seen that the other regular primitive conjugacy 
classes are D*(aa-]) - (E,  1) in W ( D 3 )  for k = 2,3,  . . ., and 

F ~ ( Q I ) ,  E6(al), E6(02), &@I), E7(a4). &(ai) for f = 1,2,  3-53 698. 
(A.1) 

Putting together the results of [27,35.39,41], we notice the validity of the following 
statement. 

Theorem A.1. Let [ w ]  C W(G) be an arbitrary regular primitive conjugacy class of order 
N .  Then there exists a lift & of w E [U] given by an inner automorphism of 8 that has the 
form 

(A.2) 

where 10 is the semisimple element of an sfz subalgebra of 8, [ l o ,  I+] = &I+, [I+, I-] = 
210, such that 

1. The largest eigenvalue of adlo equals ( N  - I). 
2. There are no singlets in the sll decomposition of 8, 
3. Only integral eigenvalues of ad Io occur. 

6 = exp (2in ad l o / N )  
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The case of the Coxeter class is due to Kostant [35]. The characteristic Ver@cation. 
diagrams [34] of the $12 embeddings corresponding? to the conjugacy classes 

Es(aJ ,  Edai) .  E d a i ) .  E s ( a d ,  Edad (A.3) 

are given in table 11 of [27], where the statement is proved concerning these cases. (See also 
remarks (iii) and (vii) below.) In the algebras of E type, the ‘shift vector’ ys E g defining a 
so called canonical lift of a representative w E [ w ]  was determined by Bouwknegt 1411 for 
all conjugacy classes [ w ]  C W(0). For the definition and for the rather complex method 
whereby ys was obtained, see [411. In the case of the primitive conjugacy classes this 
canonical lift takes the form IZ = exp (2in ad y , / N ) .  Comparing the tables of [41] with the 
tables of Dynkin [34]. one can verify that ys E 8 coincides with the defining vector of an s12 
embedding ifand only if the conjugacy class is regular. The slz embeddings corresponding 
to the conjugacy classes 

E6(Qz) ,  E7@4), Es(a3), Es(a6), (A.4) 

are identified in this way as those with Dynkin index 1341 

36, 39, 184, 120, 40 (A.5) 

respectively. Properties 1, 2 and 3 can be checked. In the &(ax-1) cases the lift satisfying 
the statement of the theorem was determined in [39], as we have discussed in subsection 4.2 
using the alternative paramebization Da(ax-1) * (x, E ) .  The remaining Fd(a1) case results 
from the Es(a2) case by applying the canonical diagram automorphism t of E6, whose 
fixed point set is F4. This is similar to an appropriate representative of the Coxeter class 
of E6 reducing to a representative of the Coxeter class of FJ on the fixed point set of t, 
which is well known. In fact, E6(02) and F4(a1) can be represented by the squares of the 
respective Coxeter elements. The slz embedding associated with &(az) by the theorem 
is the principal $12 in the regular subalgebra (AS + A I )  C E.5, which is the same as the 
principal $12 in the regular subalgebra (C3 + A , )  c F4. Using in addition lemma 9.5 of 
Springer [27]. we can conclude that the latter slz subalgebra of F4. having Dynkin index 
36, satisfies the statement of the theorem for F4(al). U 

Any representative of a regular primitive conjugacy class [wl C W(G) of order N has 
[27] a regular semisimple eigenvector associated with the eigenvalue w~ := exp (2inlN). 
For the lift IZ given in the theorem, any semisimple eigenvector H of eigenvalue w~ has 
the form 

H = CI + C-(N-I) with Ck # 0 [ l o ,  Ckl = kCx. (A.6) 

We have the following consequence of the theorem. 

Corollary A.2. Let li, be the lift of a regular primitive conjugacy class [ w ]  C W(g) given 
in the theorem and H in (A.6) be a regular semisimple eigenvector of 6 with eigenvalue 
wn. Let 7fH c B be the Cartan subalgebra defined as the centralizer of H. Then 

4. The restriction of IZ to ‘& acts as a representative of the conjugacy class [wl c W(0). 
5. Io and CI can be completed to an slz subalgebra of 8. 

t In 1271 there is a misprint in the diagram of the s h  with Dynkin index 280 that carresponds to Es(a5). 
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Proof: Since 6 maps XH to itself it defines a representative of a conjugacy class in W(B). 
This conjugacy class is obviously regular and has order N. Property 4 follows since there 
can be only one regular conjugacy classes of a given order [U]. To show property 5, notice 
that dim G!, = dim G: by property 2 in the theorem. Further notice that 

Ker(adCI) nG$o = (0) (A.7) 

Let 20, I* be the slz subalgebra given in the theorem and C-p-1) some element of 

F Delduc and L Fehir 

by property 1 and by the assumption that H in (A.6) is regular semisimple. 

B+-!). 10 Note that for 20 given 21 are not unique. Springer [U] has also shown the 
following: 

6. If ( I +  + C C , + l ) )  is semisimple then it is regular semisimple. 
7. There exists C-(N- , )  such that (I+ + C - ( N - ~ ] )  is regular semisimple. 

We wish to make some further remarks on the ‘canonical correspondence’ between s12 

embeddings and regular primitive conjugacy classes established above. 

(i) The shift vector defining the canonical lifi [39,41] of a primitive conjugacy class in 
W(G) determines an sl2 embedding only if the conjugacy class is regular. 

(ii) The slz corresponding to a regular primitive (semi-Coxeter) conjugacy class is not 
always a singular (semi-principal) s l ~ .  

(iii) The principal slz and the slz subalgebras corresponding to the conjugacy classes in 
(A.3) satisfy [27] in addition to properties 2, 3 also the property that there occurs only one 
triplet in the sl2 decomposition of 8. There exists only one additional slz embedding with 
these properties, corresponding to the regular embedding Bq c Fq. The multiplicity of the 
largest spin s l ~  multiplet in G is also one in these cases. 

(iv) Relation (A.2) alone would nor determine uniquely the conjugacy class of the s l ~  
generator IO (think of non-conjugate powers of a Coxeter element). It may be checked that 
(A.2) together with property 1 does so. 

(v) The shift vector determined in [41] for all the conjugacy classes in W(E6,7,8) 
associates an sl? embedding with every regular conjugacy class. Property 1 is nof always 
satisfied. In the cases for which it is not satisfied, the largest eigenvalue of adlo is in fact 
equal to the order N of the regular conjugacy class [ w ] .  This can be verified for W ( F 4 )  
too. If property 1 is not satisfied, then relation (5.2), [C-, G20J = (0). is not guaranteed 
to hold for the grade I regular semisimple element A = (I+ + hC-).  When (5.2) fails to 
be valid, it is necessary to modify the definition of the Drinfeld-Sokolov reduction used in 
section 5. 

(vi) There exist a few other s l ~  embeddings and non-primitive regular conjugacy classes 
in the Weyl group of a simple Lie algebra G for which all of the above presented equations 
and properties 1-7 hold true as well. These conjugacy classes in W(G) are given by the 
following Carter diagrams: 

Qdak-1) 6 W B a )  fork > 1 A2 E W(Gd  B4 E W P 4 )  D4(al) E W(F4) 
(A.8) 

where for k = 1 we use the definition Dz(@) := (7.7). The corresponding slz is dbtained 
by taking the semi-principal or principal slz embedding io the respective regular simple 
subalgebras of maximal rank 

Da(ak-1) C Ba fork 2 1 Az C Gz B4 C F4 D4(%) C F4 (A .9  
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where D ~ ( a t - ~ )  denow the semi-principal slz subalgebra in Dz( described in 
subsection 4.2. For the alert reader. we note that &(U, )  C Fa is the slz of Dynkin 
index 12, although this labelling of it is missing in the table of [34]. 

(vii) Springer [27] studied the correspondence between $12 embeddings and regular 
conjugacy classes in the Weyl group using in addition to (A.2) and properties 1, 2, 3 the 
assumption that there exists a regular semisimple eigenvector of JI given by (A.2) of the form 
in (A.6). It can be checked that the slz subalgebras corresponding to the regular primitive 
conjugacy classes together with those in (A.8) yield the exhaustive set for which these 
assumptions are satisfied. In [27] the strong additional assumption that the decomposition 
of 0 under the sl? contains only one triplet was used to ensure the existence of a regular 
semisimple eigenvector. 

In the above we have described a canonical correspondence between the regular 
primitive conjugacy classes in the Weyl group and certain associated slz embeddings. The 
correspondence. enjoys a set of attractive properties, which are shared by certain other 
regular non-primitive conjugacy classes, given in (A.8), and corresponding slz embeddings. 
Some further nice properties valid in these cases can be found in [27]. This correspondence 
enhances our understanding of the classification of integrable hierarchies associated with 
regular conjugacy classes in the Weyl group and could be further exploited in more detailed 
studies of these systems. 
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