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Abstract. Generalized Kav hierarchies associated by Drinfeld-Sokolov reduction with grade 1
regular semisimple elements from non-equivalent Heisenberg subalgebras of a loop algebra
G & C[A, A~ are studied. The graded Heisenberg subalgebras containing such elements are
labelled by the regular conjugacy classes in the Weyl group W(G) of the simple Lie algebra §.
A representative w € W(G) of a regular conjugacy class can be lifted to an inner automerphism
of G given by & = exp (2ir ad ly/m), where Iy is the defining vector of an sz subalgebra of G,
The grading is then defined by the operator di, 5, = ma{d/dA) -+ ad Jp and any grade 1 regular
element A from the Heisenberg subalgebra associated with [w)] takes the form A = (Cp +ACL),
where [fy, C_] = —(m = 1)C_ and C. is included in an s!/» subalgebra containing fy. The
largest eigenvalue of adfg s (m — 1) except for some cases in Fi, Eg7,8. We explain how
these Lie algebraic results follow from known results and apply them to construct integrable
systems, If the largest ad fg eigenvalue is {7 — 1), then using any grade 1 regular element from
the Heisenberg subalgebra associated with [w] we can construct a Kdv system possessing the
standard W-algebra defined by [y as its second Peisson bracket algebra. For G a classical Lie
algebra. we derive pseudo-differential Lax operators for those non-principal Kdv systems that
can be obtained as discrete reductions of KuV systems related to gf,. Non-Abelian Toda systems
are also considered.
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1. Introduction

The purpose of this paper is to contribute to the classification of generalized Kdv systems
that may be obtained from the Drinfeld-Sokolov approach to integrable hierarchies. One of
the main achievements presented in the seminal paper [1] by Drinfeld and Sokolov was the
interpretation in terms of affine Lie algebras of the n-Kdv hierarchies defined by Gel'fand
and Dicke in [2, 3] and Adler in [4] in terms of the calculus of pseudo-differential operators.
The phase space consisting of scalar Lax operators

L=d"+ud " 4+ 4 u,13 +a, u; € C®(S, C) (1.1)

was interpreted as the reduced phase space following a Hamiltonian symmetry reduction
applied to the dual of an affine Lie algebra. This explained the origin of the quadratic Adler—
Gel’fand-Dicke Poisson bracket as a reduced Lie-Poisson bracket and also explained the
commuting Hamiltonians generated by residues of fractional powers of L as being reductions
of those obtained by applying the Adler-Kostant—Symes scheme to the affine Lie algebra
{(see also [5]). The properties of the matrix

01 0 --- 0
P )

Ap=1"* -, .0 (1.2
0 R
A0 --. - 0

played a crucial role in the construction. The centralizer of A, in the loop algebra
2(gly) := gl ® C[A, 271 is a graded maximal Abelian subalgebra, which becomes the
principal Heisenberg subalgebra upon central extension [6]. The commuting flows were
constructed out of this Abelian subalgebra making essential use of the principal grading and
the regularity of the element A, that has grade 1. The other main achievement of Drinfeld
and Sokolov was the derivation of new Kdv-type hierarchies by generalizing the construction
to an arbitrary affine Lie algebra using the respective principal Heisenberg subalgebra and
its grade 1 regular element. Like the Kdv-type systems of [1], the affine Toda systerns are
also based on the principal Heisenberg subalgebra, with the grading and the regular element
of grade 1 playing an important rcle.

The generalized Kdv systems that will be studied in this paper will be associated
with regular elements of grade [ from certain non-principal Heisenberg subalgebras of
2(G) = G®[A, A~1] for G a simple Lie algebra using the Hamiltonian reduction technique
of [1]. Related non-Abelian affine Toda systems will also be presented.

Generalizations of the Drinfeld-Sokolov construction of integrable hierarchies have
already been considered in the literature. Soon after [1], Wilson [7] suggested associating
systems of modified Kdv- and Toda-type with any grade 1 semisimple element of any
affine Lie algebra, with respect to a grading defined by an automorphism of finite order
of the corresponding finite dimensional simple Lie algebra. In the context of Toda field
theories, similar proposals can be found in [8-101. Concerning the important, apparently
still open, problem of classifying the gradings that admit a grade 1 semisimple element,
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some progress was made in [10, 11]. The construction of systems of modified KdVv type can
be done without any reference to a gauge freedom, while the presence of a non-trivial gauge
freedom is a crucial ingredient in the construction of the Kdv-type systems in [1]. In the
unpublished work [11], the reduction procedure of [1] was generalized in order to obtain
generalized Miura maps for associating Kdv-type systems with those of modified Kdv type.
It was also realized in [11] that the semisimple element and the gradings involved in the
generalized Drinfeld—Sokolov reduction must satisfy a certain non-degeneracy condition,
which is required for the existence of the global polynomial gauges that define the Kdv
fields as in [1]. More recently, the ideas of [7] were resurrected and made concrete by de
Groot et al [12-15] taking advantage of the theory of non-equivalent graded Heisenberg
subalgebras in the affine Lie algebras developed by Kac and Peterson [16]. In [12] it was
suggested to use any graded element A with non-zero grade from any Heisenberg subalgebra
of an affine Lie algebra in a generalized Drinfeld—Sokolov reduction procedure. Such an
element A is automatically semisimple and in [}2] two types of systems, called type I and
type II, were distinguished according to whether A is regular or non-regular. The notion of
regularity is defined below. In the type I cases it is possible to verify the existence of the
polynomial gauges (‘DS gauges’) required for the construction of Kdv-type systems. This
in general is not so in the type II cases and has to be imposed as an extra condition for
obtaining Kdv type systems.

In fact the approach used in [12] is almost the same as that used [11]. In the set-up
of [12] the semisimple element A can have any non-zero grade, but in the most interesting
cases when A has grade | the two methods almost always coincide. Indeed in the case
of the classical simple Lie algebras we are aware of no exceptions. An advantage of the
approach used in [12] is that it incorporates a universal definition of the gauge group which
is applicable to any graded semisimple element A and implies the existence of polynomial
gauge fixings if A is reguiar.

According to the above, one can associate generalized KdVv systems with certain graded
semisimple elements of the affine Lie algebras that include the regular elements of minimal
non-zero {(say positive) grade taken from the non-equivalent graded Heisenberg subalgebras.
It appears a reasonable sirategy to first explore the systems that may be associated with the
non-equivalent reguiar semistmple elements of minimal grade. Progress in this direction
was reported in [17, 18], where the case of the affine Lie algebra £(gl,) was considered.
In this case the graded Heisenberg subalgebras are classified by the partitions on n [16, 19]
and it was verified in [17] that only the partitions of # into sums of equal numbers, n = sp,
and into sums of equal numbers plus one, n = sp + 1, admit a graded reguiar element.
A generalized Drinfeld-Sokolov reduction based on a grade 1 regular element from the
Heisenberg subalgebra associated with the partition » = sp was analysed in [17] and was
found to lead to the matrix version of the Gel’fand-Dicke hierarchy given by Lax operators
of the form

L=08"4uwd* '+ +up18+u u; € C°(S', gly) (1.3)

where { is a diagonal constant matrix with distinct, non-zero entries. In the case 2 = sp+1
the analogous Drinfeld-Sokolov reduction (see [18]) yields a hierarchy associated with a
more exotic-looking 5 x s matrix Lax operator:

L=08 +wd  + tup 84u,—y: (8 +w) 'y (1.4)

where the fields #; vary as in (1.3), y+ € C®(S', C*) and w € C*(§!, C). For the history
of this model and for related recent developments on Kdv-type hierarchies, the reader may
consult [20-25}, in all of which methods different to those in [17, 18] were used.
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In none of the above-mentioned papers had it been realized that a classification of the
graded regular semisimple elements of the affine Lie algebras can be extracted from known
results. We now esxplain this in the non-twisted case. Let G be a complex simple Lie
algebra. Disregarding the central extension, we recall from [16] that the graded Heisenberg
subalgebras of the non-twisted loop algebra £(G) are classified by the conjugacy classes
(see [26]} in the Weyl group W(G) of G. It is also clear from the construction in [16]
that the graded regular elements in a Heisenberg subalgebra, Hg C £(G) associated with
the conjugacy class [w] C W(G), correspond to the regular eigenvectors of the Weyl
transformation w € [w] acting on the Cartan subalgebra X < G. In [27] the conjugacy
classes in the Weyl group whose representatives admit a regular eigenvector (an eigenvector
whose centralizer in G is H) are themselves called regular. The regular conjugacy classes
in the Weyl groups were then all classified by Springer [27]. This yields a classification
of the graded regular semisimple elements of £(G), since every such element is contained
in a graded Heisenberg subalgebra. Although this classification is not yet complete, since
there are ambiguities in choosing the grading of £(G) associated with a conjugacy ciass
[w] € W(G}, because the construction involves lifting a representative w € [w] to a finite-
order inner automorphism @ = exp (2ix ad X) of G, we shall see that a natural choice exists
for every regular conjugacy class.

In this paper the above classification of the graded regular semisimple elements of the
loop algebras £(G) will be developed and applications will be considered, concentrating on
the classical simple Lie algebras. In addition to the theory of integrable systems, our work
is also motivated by the relations between integrable hierarchies and various other subjects
of two-dimensional theoretical physics, W-algebras and 2D gravity models being prime
examples (e.g. [28-33]). An important question for vs is to clarify the relationship between
generalized Xdv hierarchies and W-algebras, which is well known in the original Drinfeld—
Sokolov case. We will be able to associate a Kdv-type hierarchy with every grade 1 regular
element from a graded Heisenberg subalgebra of £(G) in such a way that the second Poisson
bracket of the hierarchy gives a classical W-algebra associated with a corresponding sl
subalgebra of G. The set of W-algebras arising in this way is a small subset of the standard
W-algebras associated with arbitrary sf; embeddings [30, 31]. Our result on the W-algebra
structures corresponding to the Kdv systems is consistent with the results in [15], where a
W-subalgebra was exhibited in the second Poisson bracket algebra for a certain class of
generalized Kdv hierarchies. By the method of [12,13], these hierarchies are associated
with a graded semisimple element A subject to a certain non-degeneracy condition, which
is satisfied in all the cases that we shall consider.

Before describing the content of the paper in more detail, it is worthwhile to recapitulate
the essence of the use of a graded regular semisimple element of non-zero grade to integrable
systems in technical terms. An element A of a non-twisted loop algebra £(G), where G is
a simple Lie algebra or gl,, is called semisimple if it defines a direct sum decomposition

£(G) = Ker(ad A) 4+ Im{ad A). (1.5)

By definition, a semisimple element A is regular if Ker(ad A} C £(G) is an Abelian
subalgebra. The Z-grading in which A is supposed to be homogeneous with non-zero grade
is defined by the eigenspaces of a linear operator dy v : £(G) — £(G),

d
dN_y = Nla +ad¥Y (1-6)

where N is a non-zero integer and ¥ € G is diagonalizable with integer eigenvalues in the
adjoint representation. If one has such an element, then Ker{ad A) is a graded, maximal
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Abelian subalgebra. Note also that ad Y defines a grading ¢ = &;G; of G. The most
important graded regular semisimple elements are of small grade taking the form

A=C.+AC_ with some Ci € G. (1.7)

The integrable hierarchies of our interest are given by Hamiltonian flows on a phase space
consisting of first-order differential operators L of the type

L=3+j+A with j : §' = > Gy (1.8)
i<k

where £(G); C £(G) is the grade i eigensubspace of dy y and & > 0 is the grade of A.
In addition to being restricted to grades strictly smaller than the grade of the leading term
A, the field j in (1.8) is usually also subject to further constraints (e.g. it often varies
in G C £(G) only) and to a gauge freedom specific to the system. Since the field j
is periodic (being a function on the space §'), one can consider the monodromy matrix
of £. The point is that under the above assumptions one may obtain commuting local
Hamiltonians from the monodromy invariants determined by the ‘Abelianization’ of £
[1,7,9,11,12]. This Abelianization is essentially a perturbative diagonalization which is
achieved by transforming £ (1.8) according to

Bri+ AP B+i+A):=0B+h+A) 1.9

where F and & are infinite series required to take their values in appropriate graded subspaces
in the decomposition (1.3):

F: 8 — (Im(ad A)) h:S'— (Ker(ad AY) ., . (1.10)

In fact, the above assumptions ensure that (1.9}, (1.10) can be solved recursively, grade by
grade, for both F(f) and A{j) and the solution is given by unique differential polynomials
in the components of j. The local monodromy invariants are the integrals over §' of
the graded components of the resulting £(f). In an appropriate Hamiltonian setting, these
provide the Hamiltonians that generate a hierarchy of commuting evolution equations.

The rest of this paper is organized as follows. Sections 2, 3 and 4 are devoted
to presenting some Liec algebraic results relevant for the classification of generalized
Kdv systems. In section 2 it is explained that the classification of the graded reguiar
semisimple elements of a loop algebra £(G) can be reduced to the classification of the
regular eigenvectors of representatives of the conjugacy classes in the Weyl group W(G)
of G thanks to resuits in [16]. The solution of this classification problem which is due to
Springer [27], is summarized in tables 1, 2 and 3 of section 3 for a classical simple Lie
algebra G.

In section 4 we describe a connection between the regular conjugacy classes in W(G),
with associated grade 1 regular semisimple elements in £(3), and certain s/; subalgebras in
the classtcal Lie algebra G. For every regular conjugacy class [w] C W(G) of order m, we
shall exhibit a lift & of a representative w € [w] having the form

W = exp (2ir ad fy/m) (.11

where [y is the defining vector [34) of an si; subalgebra of G and the largest eigenvalue
of ad Iy is (m — 1). The order of the inner automorphism @ of G is vm, where v is 1 or
2 depending on whether ad J has only integral or also half-integral eingenvalues. Actually
v = 1 in almost all cases. Using this @ in the Kac-Peterson construction of the graded
Heisenberg subalgebra, Hy C £(G) associated with [w] C W((), induces the Z/v grading
on £(G) defined by the operator d, ;, = mA(d/dA) + ad lp. This is the natural grading
of £(G) which we associate with [w]. We then show that every graded regular element
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A € Hy of minimal positive grade, in fact d ;, grade 1, has the form (1.7), where C.,. can
be included in an sl subalgebra also containing Iy. That is there exists I € G for which
(Lo, Le] = % 1u, [L4, 1] = 2Jo holds with 1, := C, contained jn A = (C. + AC_).

The above connection between regular conjugacy classes in W(G) and sl, subalgebras
in G generalizes and in many cases is implied by the classical result of Kostant [35] on the
connection between the Coxeter class in W(G) and the principal s!; subalgebra in G. In
the main text we shall take G to be a classical Lie algebra, but in the appendix we discuss
the connection between regular conjugacy classes in W{(G) and sl; embeddings in G for
an arbitrary simple Lie algebra too. In the algebras Fy and Eg 75 we find that (m — 1) in
(1.11) is smaller than the largest ad Jp eigenvalue in some cases, but the equality holds for
every regular primitive conjugacy class. As will be clear from our references, we do not
claim credit for original group theoretic results. However, by inspecting and systematizing
a number of isolated results, we will be able to formulate and verify interesting general
statements, which are worth knowing but which to our knowledge are not available in the
literature.

We turn to the application of the above resuls to the construction of Kdv type integrable
hierarchies in section 5. In subsection 5.1 we associate a Kdv-type system with every
grade 1 regular semisimple element A € H;. This hierarchy will be obtained by a direct
generalization of the standard Drinfeld-Sokolov reduction. We assume that the largest
eigenvalue of ad Iy equals (m — 1) in (1.11), which is always satisfied if G is a classical
simple Lie algebra or G,. The second Poisson bracket algebra of the resulting generalized
Kdv hierarchy is then the W-algebra [30,31] belonging to the sl embedding defined by
fp. In subsection 5.2 we derive Gel'fand—Dicke-type Lax operators for a subset of the
generalized Kav systems. These systems correspond to conjugacy classes in the Weyl group
of a classical Lie algebra given by the product of Coxeter elements in a regular subalgebra
composed of A- and C-type simple factors. They turn out to be ‘discrete reductions’ of
generalized Kdv systems related to gl, given by Lax operators of the form in (1.3) and
{1.4). In section 6 we briefly comment on non-Abelian affine Toda systems and present
the detailed form of the non-Abelian affine Toda equation corresponding to the regular,
primitive (semi-Coxeter) conjugacy class (p, ) C W(D»p).

Finally, we give our conclusions and comment on some open problems in section 7.

2. Heisenberg subalgebras and the Weyl group

Let G be a complex simple Lie algebra. Consider the Lie algebra £(G) of Laurent
polynomials, £(G) := G ® C[*, A~!], in the spectral parameter . For any graded regular
semisimple element A € £(G), Ker(ad A) C €(G) is a graded maximal Abelian subalgebra,
which becomes a Heisenberg subalgebra upon centrally extending €(G). In order to find the
graded regular semisimple elements of £(G), it is therefore enough to inspect the maximal
Abelian subalgebras of £(G) that underlie the graded Heisenberg subalgebras of the central
extension G of £(G), and select those which contain graded regular elements. With respect
to the adjoint action of an aggropriate group associated with £(G), the non-equivalent graded
Heisenberg subalgebras of G are classified by the conjugacy classes in the Weyl group of
G [16). See also [36,37] for the precise statement. Next we recall the main points of the
construction on which this classification is based. Note that, by disregarding the central
extension, 2 maximal Abelian subalgebra of £(G) will often be referred to as a Heisenberg
subalgebra throughout the text.

Suppose that H C G is a Cartan subalgebra and 7 is a finite order, inner automorphism
of G that normalizes H. Consider the following models of £(&) and its twisted realization
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UG, 1)
LG ={F|F:R— ¢, F@+2n)=F(@®}
o, ) ={fIf:R=G, fE+2m)=1(f@N}

Since 7 is inner, £(G) and £(G, t) are isomorphic [6,38]. To see this one writes T as
T = g?tradX X=Y/N (2.2)

where N is the order of 7, ¥ =id,and ¥ € G is diagonalizable. The choice of ¥ is not
unique. The isomorphism 7 : £(G, T) — £(G) is given by ‘untwisting’ as follows:

(2.1

n:fe F F(0) :=e™#9X (7(9)). (2.3)
The ‘twisted homogeneous Heisenberg subalgebra’ £(H, 1),
EH, D) ={fIf:R>H, fO+2m)=c(f(EN!] (2.4)

is a maximal Abelian subalgebra of £(G, T). The image e = n[€(H, r)] of the twisted
homogeneous Heisenberg subalgebra is a maximal Abelian subalgebra of £(G). The
natural grading on £(G, t) is the homogeneous grading defined by the eigensubspaces of
d: (G, )y — &G, )

., d
The isomorphism 7 induces a corresponding grading operator dy y : £(G) = &(G),

d
dvy =nodon! =Nla+adY (2.6)

where we used the definition A := e, The maximal Abelian subalgebras £(H, t) C £(G, ©)
and H, C £(G) are of course graded.

Recall (e.g. [38)) that Weyl group W(G) of G may be identified as the group of inner
automorphisms of & that normalize # modulo the inner automorphisms centralizing H. It is
also well known that any w € W(G) may be, in general non-uniquely, lifted to a finite-order
inner automorphism & of G which reduces to w on H, @[x = w. It follows that one can
associate a graded maximal Abelian subalgebra, Hy C £(G), with any element w € W(G).
To construct Hy, C £(G), one first lifts w € {w] and then performs the above construction
using @ in place of v in (2.1)<(2.6). Despite the ambiguities involved, it can be shown
[16,36,37] that conjugate elements of W(G) give rise to equivalent graded Heisenberg
subalgebras and the non-equivalent ones are classified by the conjugacy classes in W{(G).

We now need to construct a graded basis of £(G, &). This is done as follows. The
eigenvalues of 1 on G are of the form &* with

w = exp (2in/N) and ke{0,1,..., (N =D} @7
where ¥ is the order of @. A basis of G consisting of eigenvectors of @ may be given in
the form {H;,ﬁ} u {Ri-n;} with
Wil =o'Hy, M, eH  ad  BR)=ofRg, R, €M (29

that is by separately diagonalizing @ on the Cartan subalgebra H (where it reduces to w)
and on its complementary space H C G spanned by the root vectors. The index a5
similarly rz, counts the multiplicity of the corresponding eigenvalue, which can also be zero
of course. The desired graded basis of £(G, @) consists of the elements

7 By, and P Rz, where z:=exp(i9/N) k=rkmodN. (2.9}
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By definition, a graded element z* Hy . € 8(H, @) C &G, W) of grade k is regular if

G, i) D Ker (ad z"‘HE‘E) = {(H, w). 2.10)
It is easy to see that (2.10) is equivalent to
G > Ker (ad By o) = M. @11

Equations (2.10) and (2.11) refer respectively to infinite- and finite-dimensional Lie algebras.
Using standard terminology in the finite-dimensional case, # € H is by definition regular
if its centralizer in G is K. Hence the equivalence of (2.10) and (2.11) means that
zkHI.qr € &(H, i) is a regular semisimple element of £(G, ) if and only if H;, €H
is a regular semisimple element of G. In principle, this simple statement should make it
possible to find all graded regular semisimple elements of £(3).

In order to find the graded regular semisimple elements of £(G), one needs to select
the conjugacy classes [w] < W(G) for which the graded maximal Abelian subalgebra
Hs C £(C) contains a graded regular element. By the isomorphism between £(G, ) and
£(G) that brings £(H, 1) into Hy and the statement above, this problem is equivalent to
selecting the conjugacy classes in W(G) whose representatives admit a regular eigenvector.
A conjugacy class with this property is called a regular conjugacy class in [27], where all
such conjugacy classes have been listed.

Remark. It is apparent from the above construction of the Heisenberg subalgebra Hy C
£(C) associated with [w] € W(G) that the corresponding grading of 2(5) depends on the
choice of the finite-order inner automorphism t used for defining the lift of a representative
w € [w]. As the grading plays a crucial role in the Drinfeld-Sokolov construction, a
clarification of this ambiguity, in terms of the classification of finite-order automorphisms
due to Kac [6,38)], would be desirable. This problem will not be addressed in the present
paper, Rather, in section 4 and in the appendix, a distinguished lift having the nice properties
in (1.11) will be exhibited for every regular conjugacy class in the Weyl group.

3. Regular conjugacy classes in the Weyl group

The conjugacy classes in the Weyl group are described in [26] for all simple Lie algebras,
and the regular conjugacy classes (which admit a regular eigenvector) are described in [27].
In this section we recall the relevant results of [27] in the form of tables for the classical
simple Lie algebras, which will be used in our applications later. In these tables we shall
also present the explicit form of the regular eigenvectors for convenient representatives of
the regular conjugacy classes. The eigenvectors are not given in [27], but can be easily
computed. As a matter of fact the classification of the regular conjugacy classes can also
be derived straightforwardly by explicitly diagonalizing a representative for each conjugacy
class and inspecting the eigenvectors. In our study we originally used this ‘brute force’
approach, but after leaming of the elegant work of Springer [27] this explicit inspection
became superflucus and will not be presented, apart from some remarks. By means of the
natural scalar product, the Cartan subalgebra M C G will always be identified with the space
of roots H* in this section.

3.1. Regular conjugacy classes in W{Ap-1)

The Cartan subalgebra of A,_, may be identified with the subspace of the vector space
spanned by r orthonormal vectors €;, I = 1,. .., n which is orthogonal to the vector 3_;_, €.
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The roots of 4,_; are the vectors € — ep, [ == ', An element

H= Zn:kgﬂ ih[ =0 (31)
I=i =1

of the Cartan subalgebra is regular if and only if for any two distinct indices I and /',
fy % hp. The Weyl group 'W{A,_;) is the permutation group of the n vectors . The
conjugacy classes in W(A,_;) are in one-to-one cormespondence with the partitions of =,

5
(oo B} D mp=n (3.2)
k=1
where the n, (kK = 1,...,5) are non-increasing positive integers giving the length of the

cycles inside a giver conjugacy class. To describe the action of a representative w of the
conjugacy class associated with the partition (3.2), it is useful to re-label the basis vectors
as follows:

k~1
€y =€ I=(Enm)+ik k=1,....8 k=1,...,n (3.3)

m=]

The action of w on these basis vectors may be chosen io be

wWee1) = € wlers,) = €rp-1 i # L (3.4)
Since w does not mix vectors corresponding to different cycles, one obtains a basis of
eigenvectors by considering each cycle separately. Let us focus our attention on the kth
cycle of length n, and define wy := e%™/™, The eigenvalues of w on the space spanned
by the vectors €, (i = 1,..., ;) are (e}, jr =0,...,#2: — 1, and the corresponding
eigenvectors, denoted as H), (k), are

ny
Ho ) =) () Vg, (35)

=1

One can look for a regular eigenvector of w in the form
&
H =" dH,(®k). (3.6)
k=1

The eigenvalues of w on those Hj, (k) for which d; % O must be equal, and & % Ay must
hold for any distinct indices when re-expanding £ (3.6) in the form (3.1). These conditions
lead to the result summarized in table 1. Note that gcd(p, j) denotes the greatest common
divisor of p and j, and in the case j = 0 (ged(p, 0) = 1) the condition ¥_d; = O must
also be imposed for the eigenvector to belong to the Cartan subalgebra of A,_).

3.2. Regular conjugacy classes in W{(D,)

The Cartan subalgebra of D, may be identified with the vector space spanned by »
orthonormal vectors ¢;, { = 1,...,n. The roots of D, are the vectors *¢ L ¢, I # V.
An element H = Y, Iy of the Cartan subalgebra is regular if and only if for any two
distinct indices ! and I’, iy 7 Lhp. The Weyl group W(D, ) consists of the permutations of
the vectors ¢; and the sign changes of an arbitrary even number of them [26]. A so called
*signed partition’ of n can be associated with each conjugacy class,

Rt s T, B S m=n 67
k=1
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Table 1. Regular eigenvectors of w € W(A4,-).

L 2riff — 1)
Hy(k)y = zexp (——1( ) ) )G(A-n,p-u for0<jg(p—1).
I=1
Conjugacy class Eigenvector  Eigenvalue Regularity conditions

wr 2mj\  ged(p, N =1
(P,---vP): Pz 1 ‘;dkHj(k) &KP( P ) (dk)P ?l_. (dk’)p. dy # 0 if P> 1

= 2mj\  gedp, j) =1
(Prevepe B 2> ;W"’ ‘”‘P(T) (@)P 3 (@), di #0

where ny,....1n, (Nr41,...,05) i8S @ sequence of non-increasing positive integers which
are the lengths of the positive (negative) cycles. The number of negative cycles s — r is
even. It is shown in {26] that a unique conjugacy class in W(D,) is associated with such
a signed partition, except when all cycles are positive of even length, in which case the
same partition corresponds to two distinct conjugacy classes. To describe the action of a
representative w of the conjugacy class associated with the signed partition (3.7}, we follow
[39] and introduce the adapted basis vectors ¢, (k= 1.....5, i = 1,...,n) similar to
{3.3). The action of w on these basis vectors may be chosen to be:

wl€r1) = €xn, WErn) = €1 bk F1 figkgr (3.8)
and
wiep,1) = —€xn, Wlekn) = € q-1 B #1 fr<kgs, (G99

In the case of a signed partition with only positive even cycles, a representative w' of the
second conjugacy class may be chosen to differ from w (3.8) in the first cycle only, where
it contains two sign changes:

w'(€1,1) = —€1n w'(er2) = —€13 w'lery) =€y H#1,2 (3.10)
In fact, the conjugacy class of w' is not regular. If H;(k) and I?j(k) denote a basis of
the eigenvectors of w on the space spanned by €, ..., €. for k = 1,...,r and for
k=r+1,...,s, respectively, then the general eigenvector H takes the form
r 5 .
H=Y dH,®)+ Y dH,k) @3.11)
k=1 k=r+1

where the eigenvalues of w associated with the ferms with non-zero d; must be equal,
The eigenvector H; (k), with eigenvalue (w)* for jy =0,...,m — 1, is given in (3.5).
Introduce the notation @ := e™/2% . The eigenvector &;, (k), with eigenvalue (@,)24~! for
Je=1,...,n, is defined by

H) = Z(t?)k)a*_”m"_nék,i&. (3.12)
ir=1

As can be verified by inspecting equation (3.11), the regular conjugacy classes [27] and the
corresponding regular eigenvector are the ones given in table 2, where ¢ is an integer.
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Table 2. Regular eigenvectors of w € W{D,)}.

Hitk) = iexP(zLi(-[p_—nj)é(k-npu for0 L j<({p-1).
=1
Hk) = ieXP (ﬂ——ll),a—f—ﬂ) EQkn1)pt for1€j<p
=1
Conjugacy class Eigeovector Eigenvalue Regularity conditions
PRI ,;Z}d*”'f”‘) o (32) @Y A S, 4 #0i
Flr i g0 :gd"ﬂf ® (zm) o L, 0
f';“l'.’sz 27. g2 1 ;d“ﬁf(") exp(mm — ) %;f)(f;fiZd:r)): :n #0if p>1
T s e (PG ERRAINT L
gﬁ'} 1"?':)24‘ N :Zidk -‘:’j k) exp (2”1(21 = 1}) %jf)(f;z";?d:,:;: lﬂrk #£0

3.3. Regular conjugacy classes in W{B,) =~ W{C,)

We identify the Cartan subalgebra of B, or C, with the vector space spanned by n
orthonormal vectors €, ! = 1,...,n. The roots of B, are =6 + ¢, I & I' and Xe.
Those of C, are +€; L €y, I # 1" and +2¢;. Thus an element H = Y ,_, fy¢ of the Cartan
subalgebra is regular if and only if for any two distinct indices I and I', Ay ¢ Lhy and
for any I, Ay 7% 0. The Weyl groups of B, and C, are isomorphic, they consist of the
permutations of the basis vectors & and the sign changes of arbitrary subsets of them. The
conjugacy classes of these groups [26] are in one-to-one correspondence with the signed
partitions of »:

(CHNR N AN S I L T 3.13)
k=i
where n1, ..., 1, (#r41, ..., B) 15 a Sequence of non-increasing positive integers which are

the lengths of the positive (negative) cycles. The only difference from the D, case is that
there is now no limitation on the number of negative cycles. A representative w of the
conjugacy class labelled by the signed partition (3.13) is obtained using the same equations
{(3.8), (3.9) as in the D, case. The supplementary requirement that for any I, h; 5 0, simply
prohibits the appearance of a cycle of length one not contributing to the eigenvector H in
(3.11). The result is summarized in table 3, with the same notation as in table 2.

The regular conjugacy classes in the Weyl group of an exceptional simple Lie algebra,
and in the group obtained as the extension of the Weyl group by the automorphisms of the
Dynkin diagram, are also listed in [27]. The classification of regular conjugacy classes in
the extended Weyl groups can be used to find graded regular semisimple elements in the
twisted affine Lie algebras, similar to the role of the Weyl group in the non-twisted case to
which our attention is restricted in this paper.
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Table 3. Regular eigenvectors of w € W(B,) = W(C,,).

H (k)—Ze (27"“_ 1)J)€(k—l)p+l for 0K j<(p—1)
Bjtk) = fjexp (ﬂ{:‘l—)-;ﬂ:ﬁ)m-nmr for1<jgp

=1
Conjugacy class Eigenvector Eigenvalue Regularity conditions
PN Zd" KA (2“”) @ et r0
G P P2 gdkgj(k) exp (—-———2’”(22;' 1)) B ey 4 %0

4. Heisenberg subalgebras with graded regular elements and sl, embeddings

In section 2 we saw that the graded Heisenberg subalgebras of the non-twisted loop algebra
£(G) are classified by the conjugacy classes [w] in W(G), and the graded regular elements
in the Heisenberg subalgebra H; C £(G) arise from the regular eigenvectors of w € W(G).
For G a classical Lie algebra, the conjugacy classes in W(G) listed in the tables of section 3
parametrize those Heisenberg subalgebras that contain graded regular elements. In this
section we describe a relationship between these Heisenberg subalgebras and certain si;
subalgebras of . This relationship consists of two points. First, in the cases when Hy
contains a graded regular element, the grading dy, y of £(G) induced using the appropriately
lifted Weyl group element i) in the construction of section 2 takes the form

d
dyy = vd,,,,,ro dm gy = mld—l + adlp 4.1)

where Iy € G is the semisimple element of an sly subalgebra {I_, Iy, I.} C G in the
normalization

o, Ix]) = &1x Ly, 1] =2Mo. (4.2)

Here v = 1 or 2 depending on whether Jp determines an integral (even) or a half-integral
sly subalgebra of G, and (m — 1) is the largest eigenvalue of ad/y on G. Second, for any
graded regular element A € H; of minimal positive grade, which has the form

A=Ci+AC_ with some C= € § (4.3)

we show that C.. is the raising element of an sly subalgebra containing Iy. That is there
exists I_ € ¢ such that (4.2) holds with I} = C.. The d,;, grade of A is one. These
statements provide a generalization of the well known relationship between the principal
Heisenberg subalgebra and the principal sf; embedding, which underlies the W-algebra
structure of the Kdv-type hierarchies of Drinfeld and Sokotov [1]. In subsection 4.1
we present a convenient method for constructing explicit realizations of the Heisenberg
subalgebras, which will be used to verify the above statements in subsection 4.2.

It should be emphasized that the above statements refer to a particular lift @ of
w € [w]. A construction of the appropriate lift will be given for any regular conjugacy
class [w] c W(©).

The correspondence between certain si; subalgebras in G and certain conjugacy classes
in W(G) has been investigated in the mathematics literature from various viewpoints. The
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connection of the above mentioned statements to related results in [35,27,40] will be
explained in subsection 4.2. See also the appendix.

4.1. A practical algorithm for constructing Heisenberg subalgebras

Recall that the principal Heisenberg subalgebra of £(G) is associated with the conjugacy
class in W(G) consisting of Coxeter elements [6]. The Coxeter class is one of the so called
primitive conjugacy classes of W(G), which are characterized in [16,41] by the condition
that det{l1 — w) = det{.,A) for a representative w, where .A is the Cartan matrix of &.
In {40} the term ‘semi-Coxeter’ classes is used to denote the primitive conjugacy classes.
The most intuitive defining property of these conjugacy classes is that they do not possess
a representative contained in a proper Weyl subgroup of W{&). The Weyl subgroups of
W(G) are the Weyl groups of the regular semisimple subalgebras of §. For the algebras A,,
B,, C, and G- the Coxeter class is the only primitive conjugacy class [26]. Concretely, it is
the class of the cyclic permutation (x4 1) for W(A,) and that of the negative cycle (®) for
W(B,) =~ W(C,). For W(D,) the situation is more interesting. The primitive conjugacy
classes are those containing two negative cycles, (77, ) forany my 2y 2 1, ny4+ny =n,
and the Coxeter class is that of ry = 1. The classification of the conjugacy classes in W(G)
described in [26] is closely related to the classification of the regular semisimple subalgebras
of G treated by Dynkin [34]. In fact, it has been shownt in [26] that each conjugacy class
of W(&) can be (in general non-uniquely) represented by an element w € W(G) of the
preduct form

W=w W Wy 4.4)
where w; belongs to a primitive conjugacy class in the Weyl group W(G,) of the simple
factor G, (k = 1,...,r) of a regular semisimple subalgebra of G,

Gi+G+---+G CG. (4.5)
The Cartan subalgebra H < G on which w given in (4.4) acts is a direct sum

H=Hi+He+--+H, +H (4.6)

where H, is a Cartan subalgebra of Gy and w acts as the identity on the subalgebra H' C 'H
which is orthogonal to H; for & = 1,..., r and satisfies rank G = (Zk rank gk) + dim H'.
For the construction of the corresponding Heisenberg subalgebra, one needs to lift w to a
finjte-order inner automorphism @ of G. Clearly, the required lift can be taken to have the
form

W = exp (2ir ad X) X=X+X+--+X%, 4.7
where X, € G, defines an appropriate lift 1, of wy to a finite-order inner automorphism of
Gr

Wy = exp i ad X)) X, € Gi. (4.8)

Below X, will be given explicitly. We are interested in the graded Heisenberg subalgebra
He = nlé(H,&)] C £(G) associated with @. The twisted homogeneous Heisenberg
subalgebra £(H, W) C £(G, @) in (2.4) obviously has the direct sum structure

E(H, W) = £(Hy. @) + £(Hp, W2) + -+ - + E(H, tr) + E(H). (4.9)
Using o in (4.7), the ‘untwisting’ # in (2.3) induces a corresponding direct sum structure
i = Hyo, + Py + - + Frg, +£OL) (4.10)

T This is shown in [26) for any simple Lie algebra including the exceptional ones.
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where ’F{k_@ C £(Gy) is the Heisenberg subalgebra associated with the finite-order inner
automorphism W of Gy, and £(H") = H'@C[A, A~']. This leads to the two-step strategy for
constructing the non-equivalent graded Heisenberg subalgebras of the loop algebras £(G):
(i) construct all of the Heisenberg subalgebras corresponding to the primitive conjugacy
classes in the Weyl groups of the simple Lie algebras; (ii) the general case is then obtained by
running over the regular semisimple subalgebras of G and inserting the ‘primitive Heisenberg
subalgebras’ from the first step into the factors, Although the presentation of a Heisenberg
subalgebra provided by this scheme is not unique in general, it is very convenient in practice.
In particular, this scheme defines a correspondence between the Heisenberg subalgebras of
£(G) possessing a graded regular element and certain regular semisimple subalgebras of
the Lie algebra §. In the case when G is a classical Lie algebra, the correspondence is
summarized in table 4.

The notation used in table 4 is as follows. A simple factor G, appearing in the regular
reductive subalgebra in the third column of the table represents the Coxeter class of W(G;)
as well as the principal Heisenberg subalgebra of £(G;). Concerning the primitive conjugacy
classes in the D, case, we recall from table 2 that in addition to the Coxeter class the other
‘extreme case’ (P, P) also admits a regular eigenvector for n = 2p. The term 52p in table 4
represents the conjugacy class (7, 7) of W(D3p) and the respective non-principal primitive
Heisenberg subalgebra of £(Dy,). The term H,, denotes a Cartan piece of dimension k,
and its presence means that the subspace £(H}) of the homogeneous Heisenberg subalgebra
£(H) C £(Q) is contained in Hg. Since explicit realizations of the principal Heisenberg
subalgebra of £(G) are known for every simple Lie algebra, an explicit realization of any
Heisenberg subalgebra appearing in table 4 may be obtained if one constructs one far the
primitive case Dop. This will be provided in subsection 4.2.

Table 4. Heisenberg subalgebras possessing a graded regular element. Here s is the number of
cycles in the partition, p is a positive integer and Ay = #.

Algebra Conjugacy class Regular subalgebra ord(tir)
Aps-t p.....p Ap_+ o Ap 1 +HL P
Aplz-1) (py....p. 1) Ap—i+ -4 Apm) +'H;_1 ged(2, p)p
Dpe {(p,....p) podd Ap_1+-~+Ap_1+'H; r
Dpis-1341 po..op ), podd Ap-1+ o+ Ap_ |+ H] P

Dp; B..... 7). 5 even Dap+ -+ +Dzp 2p
Dps-1)41 (_p....,'ﬁ,T), 5 even _D-2P+"'+52P+Dp+] 2p
Dpis-1y+1 @ ..., 1), 5odd ﬁzp+v"+52p+7{’, 2p
Bpr (py....p), podd Ap i+ o+ Apl + M r

Bps &, ..., D). 5 even -52,,+---+52p 2p
Bps @, ..., P). s odd Dap+-+Dap+ By 2p
Cps (p,....p). podd Apot+ o+ Aper +H, P

Cps @ )] Cot - +Cp 2p

4.2, A connection with sls embeddings

For any simple Lie algebra G, there exists a celebrated relationship [35] between the Coxeter
class of W(G) and the conjugacy class of the principal sl subalgebra of G, whose essence
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is that the lift of a Coxeter element we € W(G) may be chosen as
I
e = exp (Zirr 2d °) @.11)
Ne
where N¢ is the Coxeter number and Jy is the semisimple element of a principal sfs
subalgebra of ¢. This means that there exists I € G so that
Ho, Ix) = x1a Uy, I-)=2h “.12)

and I, has the form [y = é 2”0 H,, where the H, € H are the Cartan generators associated
with a system of positive roots @ > 0O with respect to a Cartan subalgebra M < ¢. The
Cartan subalgebra 7 C G is said to be ‘in apposition’ to the Cartan subalgebra H C G
on which we actst. A consequence of this is that the grading of £(G) induced by its
isomorphism with £(G, i)c) is the principal grading defined by

d
dNCJQ = Ncla + ad L. (4.13)

Furthermore, decomposing g as
G =gl +6p 1ok “.14)

using the (principal) gradmg of G defined by ad lo, the grade 1 regular element A of the
principal Heisenberg subalgebra Hy,. takes the form

A=Cy+rC_ C.eC with C, = I, (4.15)

i.e. the sl subalgebra of G defined by the nilpotent element C, € G through the Jacobson—
Morozov theorem [42) is the same s5{3 that enters the grading (4.13). Note also that

[C-, G2 = {0} (4.16)

The relations e¢xpressed by equations (4.11),(4.15),{4.16) play an important role in the
Drinfeld-Sokolov construction of Kdv-type hierarchies and we wish to show that they
generalize to all cases given in table 4, for which a graded regular element exists in the
Heisenberg subalgebra. (The case of the homogeneous Heisenberg subalgebra is related to
the trivial, identically zero, sl, embedding and is excluded in what follows.) We need to
deal with the Da, case first, sincé it occurs as a ‘building block’ in table 4.

In order to take care of the Dy, case, we make use of a result of {39] on the lift of
a Weyl group element wg,, ) € W(D,) belonging to the conjugacy class (7 l,nz) In
subsection 2.6 of [39], a lift 1, .»,) conjugate to

T, = exp (2iw ad K/ N) . (4.17)
where N = lem(2n;, 2n,) is the order of #, z,) and

N & N (] .
K=— n —k+ Dey + — ny — k)€, 4.18
o, ;(1 )1 2 ;(2 Yen 4k (4.18)

was constructed for any n; +n,; = n. We observe that K is the semisimple element of an sl;
subalgebra of D, in the Coxeter case n; = 1 and in the case n; = n3, and is not proportional
to such an element in the other cases. This i3 most easily seen from the spectrum of the
matrix K in the defining 2n-dimensional representation of D), taking into account that ¢,
(k = 1,...,n) contains two non-zero entries, =1, when diagonalized. For n; =ny = p,

i Equivalently, if the principal siy generaior Iy is taken from 74 then g defined by (4.11) acts as a Coxeter element
on the Cartan subalgebra in apposition 7, which may be defined as the centratizer of an element (I, + C.) € G,
where C_ # Q is chosen in such a way that [[y, C_] = —(N¢ — D)C_.
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this explicit form of K also implies that the 4p-dimensional vector representation of Dy,
decomposes under the si; subalgebra containing K according to

4p=Qp+1)+@p—1). 4.19)

According to Dynkin [34], this is one of the singular s/, subalgebras (‘S-subalgebras’) in
D;p. (Note that the singular sl; subalgebras of [34] are called semi-regular s/, subalgebras
and the principal sf; is called the regular sy in some of the literature.) It is interesting that
the number of conjugacy classes of singular sl; subalgebras in D, is actvally equal to the
number of primitive conjugacy classes in W(D,), but the above lift of wg, 5,y corresponds
to an sl; embedding only in the cases when wg, 5,y admits a regular eigenvector,
1t follows from the above that T in (4.17) may be used in the construction of the
sought after Heisenberg subalgebra, denoted as 7:{(—!,@, where K is the semisimple sis
generator corresponding to the decomposition (4.19) of the defining representation of D5,
(which defines it up to conjugation). It is convenient to realize D3, as the subalgebra of
8l4p consisting of the matrices A subject to A'n+ nA = 0 with the 4p x 4 p matrix n given
by
2p+l 2p—1
n= Z € p+2—k T Z €2p4 14k, dp+1—k (4.20)
k=1 k=1
where ¢; ; is the usual elementary matrix with a single non-zero entry 1 at the i/ position,
and to realize the sl; generator X as

K =diag{p,....0,....—p. (p=1,....0,....~(p— D} (4.21)
The appropriate grading of £(D»p) is given by

d
d2p.K = Zp.la +adX. (4.22)
Note alse from table 2 that the grade g subspace of ’Fé@@ must be of dimension 2 if
g =1.3,...,(2p — 1) modulo 2p, and is otherwise empty. Let us now introduce the
matrices F| and H); in Dyp:
P z
H = Zakek.k-}-l - Zap+l—kep+k.p+k+l +dp+1(€2p.1 - €2p+1,2)
k=t k=1
p-t ol (4.23)
Hyy:= Zbk32p+k+l.2p+k+2 - pr—k33p+k.3p+k+l
k=1 k=1
+bpai(eap2ps1 — €12p42) + Bptipir{€ap1 — €2p41,2p42)
where ai,...,ap41, b1, ...,bp, € C are arbitrarily chosen non-zero parameters. We also
need their matrix powers
Hiyg = (H)" ™ for j=1,2,....,p k=12 (4.24)

It can be checked that these 2p matrices commute and span a Cartan subalgebra of D, for
a generic choice of the parameters. We denote this Cartan subalgebra as Wz 5. The point
is that Hp 7 C Dap is invariant under the automorphism given in (4.17), and H;; is the
corresponding basis of eigenvectors:

. - 2x
top (Ha) = @Y Hy  o=exp (T) N =2p. (4.25)

This implies that 5 acts on the Cartan subalgebra He 7 as a representative of the
conjugacy class (p, p) C W(Dzp). Performing the ‘untwisting’ described in section 2 is
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straightforward, and we get the Heisenberg subalgebra ’F((-,;@ C £(Dp) as the span of the
following graded basis:

(A fomeZ j=1,2,....p k=1,2 (4.26)
where
2 14
Avyi= ) axerin — Zap+l—kep+k.p+k+l + Aapii(ezp,1 — €2ps1.2)
k=1 k=1
el L (4.27)
Mg = Z Dreap itk 2prhrz — Z Bp—ke3ptt 3ptict]
k=i k=1

+bpar(espaprt — €1,2p42) + Abpapri(€ap) — €2ps12p42).

The basis vector in (4.26) has grade (27 — 1) -+ 2mp with respect to the grading dap g. This
construction of H 7 was inspired by an analogous construction in [39]. A grade-1 regular
element A € He 5 will be a linear combination

A=diA+dog2 (4.28)

with generic non-zero coefficients d), d;. Writing A in the form A = C,. +AC_, Cy has
grade 1 and €_ has grade —(2p — 1) with respect to ad K. We wish to show that X and C
are contained in the same s/, subalgebra of Dy, i.e. that the commutation relations given
in (4.12) hold with Iy := X, I, := C; and some I_ € D5, analogously to the principal
case.

We need to present an auxiliary result at this point. Consider a regular semisimple
element A = (C; + AC.) & £(0), with some Cy. € G, having definite grade with respect
to a grading operator dy g = NAd/d) + ad K. Suppose that

[C_, G551 =10} ' (4.29)

where § = GX, + GX + G%, is the decomposition defined by means of the eigenvalues of
ad K. Then the following ‘non-degeneracy relation’

Ker(ad c.,.) ngk, =10} (4.30)

is satisfied. Indeed, if one could find an element v € Qfo for which [C.,v] = O, then
[A.v] = 0 would also hold because of (4.29). Clearly, Ker (adA) C £(G) can contain
ouly semisimple elements of § C £(G), but any v € Q’fn is a nilpotent element. This
contradiction proves (4.30).

The above argument applies to A in (4.28), since (4.29) follows from the fact that
the grade of C_ is the smallest eigenvalue of ad K on § = D,,. A consequence of the
non-degeneracy relation (4.30) is the equality dim[Cy, GX|] = dimGX|. This implies the
existence of I_ € GX, for which [C., I.]} = K, since in our case dim GX| = dim G holds
as is easily verified using the explicit formula (4.21) of the grading operator K. The set
(I, Ip = K, I := C4} spans the required sl subalgebra. This settles the Da, case.

Turning now to the general case, we first rewrite the lift & in (4.7) as

W =exp{ 2im 4.31)
N @
where

V= NX = oo ¥y 4 by o o 4.32
=NX=gh+gh TR (4.32)
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Here N is the order of i, Ny is the order of i, when acting on Gy, ¥y = N X} in (4.8).
The grading of £(G) corresponding to w is defined by the operator dy. v,

d
dny = NAd_A. +advt. (4.33)
When restricted to the subalgebra £(G,), this grading satisfies

N d
dN,y]g(gk) = F};dﬂbﬁ dNInYk = Nkla +ad¥; (4.34)

where dy, y, gives the grading of £(G;) induced by the isomorphism £(Gi) = £(Cy, ty).
Using the lifts of the regular primitive Weyl transformations given in (4.11) and in (4.17),
Y, is the semisimple element of an sl subalgebra of G, with the same normalization as [
in (4.12). Hence it follows from (4.32) that ¥ is proportional to the semisimple element of
an sl; subalgebra of G if and only if

Ny =N; for any i # j. {(4.35)

Inspection shows that (4.35) is satisfied for all cases in table 4, and therefore
N
1

where N /N turns out to be 1 or 2 depending on whether (¥ 4 ¥ 4 ... 4+ Y,) defines an
integral or a half-integral s, subalgebra of G, i.e. whether the grading of G defined by this
element is integral or half-integral. In fact, the si; embedding is an integral one in all cases
in table 4 except the case (p, ..., p. 1) with p even for G = Ap;_13. One also sees that
any graded regular semisimple element A € H of minimal positive grade (N/N|) has the
form A = Cy + AC_-, where I := C is contained in an sfy subalgebra whose semisimple
element is Iy = {(N1/N)Y given by (4.32). This is a consequence of what we know about
the principal and Egp cases, simply because such 2 A is a linear combination of respective
graded regular elements from the Heisenberg subalgebras T—fg,k C &Gy) in (4.10). With
respect to the grading of G defined by ad Jo, the non-degeneracy relation

Ker(ad 1+) NGk = (0} (4.37)

then follows from the sl structure. Inspection shows that [C._, Q‘:fo] = {0} is also satisfied
in each case, since C_ is an eigenvector of ad Jy associated with the smallest eigenvalue,

Let us summarize the results obtained in this section. For G a classical Lie algebra,
we verified the following connection between regular conjugacy classes in W(G), with
graded regular elements in the associated Heisenberg subalgebra Hy; C £(G), and sl
subaigebras in G. For any regular conjugacy class {w] € W(G), the appropriately lifted
Weyl transformation takes the form @ = exp (2imw ad Y/N) in (4.31), where ¥ = vlp with
Io being the semisimple generator of an sl subalgebra of G and v = 1 or v = 2 so that
ad ¥ has integral eigenvalues. The largest eigenvalue of ad ¥ is (N — v), where ¥ is the
order of @ and m = N /v is the order of w € [w]. The smallest positive dy 5, grade for
which a graded regular element A € H; exists is one, and any grade 1 regular element has
the form A = (C; + AC_), where C, is included in an si; subalgebra also containing fp.
The eigenvalue of ad Iy is minimal on C_. Of course % acts as the Weyl transformation
w on the Cartan subalgebra defined by the centralizer of its regular semisimple eigenvector
givenby H :=AA=1D=(C;+CHeg.

If w in (44) is a Coxeter element in a regular semisimple subalgebra of G, the above
results follow from the result of Kostani [35] on the connection between the Coxeter
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class and the principal sy given by formula (4.11). The case of the regular semi-Coxeter
conjugacy class (P, P} C W{(D+,) was dealt with by inspecting the lift found in [39].

We wish to note that in [27] the result of Kostant [35] was generalized to give a similar
connection between certain regular conjugacy classes in W(G) and those special integral
s5l; subalgebras of G for which the decomposition of G into s/; irreducible representations
containg no singlets and only one triplet. In addition to the principal sk, such sf; subalgebras
exist only in the exceptional Lie algebras as fisted in [27]§. See also the appendix,

In passing, we also wish to mention the correspondence found in [40] between the
conjugacy classes of arbitrary singular (semi-regular) si; subalpebras in G [34] and a subset
of the primitive (semi-Coxeter) conjugacy classes in W{G). This is given in terms of
an injective mapping from the set of singular sl subalgebras into the set of primitive
conjugacy classes, which is defined by the coincidence of the so called *Carter diagrams’
[26] associated with the conjugacy classes in W(G) and to the sl; subalgebras in G. On
the overlap of their ranges of applicability, the ‘Kostant-type’ correspondence discussed in
[27], and here for Dy, and the one in {40] are consistent. It is not clear whether the result
of [40] has any significance for the theory of integrable hierarchies.

5. Applications to Kdv-type systems

Now we turn to the application of the results collected in the previous sections to the
construction of integrable hierarchies. For G a simple Lie algebra, fix a grade 1 regular
semisimple element A from a Heisenberg subalgebra Hy < £(G). Suppose that A has the
form

A=I +AC_ 5.1
where I, belongs to the sly subalgebra {I_, Iy, .} C G for which d, 1, in (4.1} defines the
grading of £(G). Suppose also that

[C-.Gaal =10}  withGoo=) G (52)

2]

where G;, denoted in section 4 as g,{", is the eigensubspace of ad [y with eigenvalue £.

As we have seen, for @ a classical Lie algebra the relations in (5.1) and (5.2) are ensured
by using the lift @ given in (4.31) for an arbitrary regular conjugacy class [w] C W(G).
For the exceptional Lie algebras these relations may be assumed in connection with many
regular conjugacy classes in the Weyl group, which include for example afl regular conjugacy
classes in W((2) and all of the regular primitive conjugacy classes. It appears that in W{Fy),
W(Eg73) there exist some regular conjugacy classes for which (5.2) cannot be satisfied;
see the appendix,

Let us recall [30,31] that one may associate a ‘classical W-algebra' with any sl
subalgebra of G by a generalization of the Hamiltonian reduction used by Drinfeld and
Sokolov to obtain the second (Gel’fand-Dicke)} Poisson bracket of their Kdv-type hierarchies.
In subsection 5.1 we show that if the si» subalgebra is related to a grade 1 regular semisimple
element A in the above way, which specifies a (small) subset of the non-equivalent si,
subalgebras of G, then it is possible to obtain a Kdv-type hierarchy from Hamiltonian
reduction whose second Poisson bracket is the W-algebra defined by the sip-subalgebra.
Subsection 5.2 is devoted to the concrete description of some of the systems that may be
obtained from this approach. We analyse the cases when G is a classical Lie algebra of B,

} The sf; subalgebra of G appearing in table 11 of [27] has in fact three triplets and not one, but the claims are
siill valid for this 5!; as is easily seen using that it is actually the principal st inside the regular A» C Ga.
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C or D type and the regular reductive subalgebra appearing in the third column of table 4
contains only A- or C-type simple factors. The resulting generalized Kdv systems turn out
to be discrete reductions of the systems associated with gl, having the Gel’ fand-Dicke-type
Lax operators in (1.3} and {(1.4). That is the Lax operators of the resulting systems are of
the form (1.3) or (1.4) subject to certain extra symmetry conditions, very much like the
well known principal case [1] for the Lie algebra C,,, where the Lax operator is of the form
{1.1) with n = 2p subject to the self-adjointness condition L' = L.

5.1. Kdv systems associated with grade 1 regular elements

The following construction is a straightforward generalization of that in [1], and can also
be viewed as a special case of the more general construction given in [11-13].

After fixing a grade 1 regular semisimple element A € £(G) subject to (5.1),(5.2),
consider the manifold M consisting of first-order differential operators,

M={L=3+T+rC_|JeC™(5'.6)}). (5.3)

The manifold M js the phase space of an infinite cotlection of bi-Hamiltonian systems. The
two compatible Poisson brackets (PBs) are given as follows. The ‘second’ PB is given by
the affine current algebra structure,

5f 8h SF\' &
{fihh(J) = fs (J[BJ 51}4-(8_1) ﬁ) (5.4)
and the ‘first’ PB is given by
8f 6&h
by == [ we- | 2] (55)

for f, h smooth functions on M. The Hamiltonians of interest are generated by the
invariants {‘eigenvalues’) of the monodromy matrix T(J,1) of £. The corresponding
Hamiltonian flows commute as a special case of the Adler-Kostant—-Symes construction
and are bi-Hamiltonitan (see, e.g., [43]) . The Hamiltonians given by the monodromy
invariants are non-local functionals of J in general. Using that C_ in (3.3) is related to the
regular semisimple element A according to (5.1), we can perform a symmetry reduction of
the system on A leading to a local hierarchy.

Let G be a connected Lie group corresponding to ¢. Define the subgroup Stab{C_)
of G by gC_g~! = C_ for g € Stab(C_). Denote the group of smooth loops based on
Stab{C_} as Stab(C_) := C* (S', Stab(C_)). The possibility for reduction rests upon the
fact that there is a Poisson action (meaning that it leaves the PBs unchanged) of s’th(c_)
on M given by

B+I+AC) > g@+ T +AC g =g+ Ng™ +AC. V g e Stab(C_)

(5.6)
which leaves the monodromy invariants unchanged. For present purposes we consider
reduction based on the subgroup A" of Stab(C_) whose Lie algebra is C® (S1 g<o) The

reduction is defined by first imposing constraints on M so that the constrained submanifold
Mc cMis

Me={L=3+j+A]jeC®(5, Ga)} (g<;=ng)- CN)

k<l
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That is the constraints defining M, C M restrict J to have the form J = (j + 1) with
I3 in (5.1). The second step of the reduction is to factorize M, by the group N of ‘gauge
transformations’ acting according to

ef L efLef Vel e N with f € C® (5", Go) . (5.8)

Standard arguments show that the compatible PBs on M induce compatible PBs on
the space of gauge invariant functions on M, identified as the space of functions on the
reduced space Meq = M /N. Thanks to the non-degeneracy relation in (4.37), the gauge
fixing procedure of [1] is applicable to obtain a basis of the gauge invariant differential
polynomials on M., which may be used as coordinate functions on M./A. The gauges
resulting from this procedure are often called ‘DS gauges’ (see, e.g., [311). A particular
DS gauge is the so called lowest weight gauge [44], whose gauge section My, C M, is
defined as

My = {L=8+jlw+ Al jiw € C° (S, Ker(ad 1)) }. (5.9)

In terms of the one-to-one model of M, /N furnished by the global gauge section My, the
reduced second PB is given by the Dirac bracket algebra of the components of f, induced
from (5.4). This Dirac bracket algebra is just the classical ¥V-algebra of [30] (see also {31])
associated with the sl subalgebra {I_, Iy, I.} C G.

A generalized KdV hierarchy of bi-Hamiltonian flows is generated on the reduced space
M. /N by the commuting Hamiltonians provided by the local monodromy invariants of
L, which are determined through the Abelianization procedure described in equations
(1.9),(1.10).

The hierarchy on M4 resulting from the above ‘Ds-type’ symmetry reduction [1] often
possesses a residual symmetry that may be used to reduce it further. Define the subgroup
Gp of Stab(C_) by

Gp = Stab (€_) M Stab (I.) N Stab (7_). (5.10)
Let {T,} denote a basis of the Lie algebra Gz of Gg,
Gr=Ker{(adC_)NKer(ad ) N Ker(ad1.). (5.11)

In fact the subgroup Gr = C® (s, GR) of S:-t;b(C_) survives the DS-type symmetry
reduction. Taking My, as the model of M./N, the residual G symmetry acts as

@+ jw+A) > g+ jw+ )" =g@+ g +A  Vgelg (5.12)

These transformatjons leave invariant the compatible PBs and the commuting Hamiitonians
constituting the Kdv-type system on M;,. At the infinitesimal level, the Gy symmetry in
(5.12) 1s generated through the second (WW-algebra) PB by the components tr (T, fiw) of fiw,
that is by the subset of the s/, singlet components of j,, annihilated by ad C_.

The residual symmetry in (5.12) is a continuous symmetry. Another interesting
possibility, which is important in examples as we shall see later, is the presence of a
discrete symmetry. This occurs for instance in the following situation, Let v 1 G — G be
an involutive automorphism with a corresponding involution I : G — G. In the obvious
way, extend y to an involution of £(G). Suppose now that A is a grade 1 regular semisimple
element of £(G) which is y-invariant, y(A) = A, and the grading d, ;, is also invariant,
y(Jo) = Io. Suppose furthermore that the fixed point set G¥ C G is a simple Lie algebra,
(All classical Lie algebras are fixed point sets in gi,, or sl,, for appropriate y.} The
Heisenberg subalgebra HA := Ker(ad A) of £(G) is an invariant subspace of ¥, and the
fixed point set 'H" C Hy is a Heisenberg subalgebra of £(G”). We can now perform the
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above DS reduction leading to a Kdv-type hierarchy using the same element A and either a
system based on G or one based on G¥ as the original system.

In the former casc we start with the bi-Hamiltonian manifold A4 in (5.3), introduce the
constrained manifold M, in (5.7), and end up with M, = M/N. The natural action of
y on M, given by

y:@+J4ACOP @4+ (N +ACL) (5.13)

leaves invariant the compatible PBs on M. Since M, is mapped to itself by ¥ and also NV is
mapped to itself by I" as y preserves the grading, the action (5.13) induces a corresponding
action of ¥ on Mpa. On account of (i) = I, which may be assumed by choosing I_,
the gauge section M)y, of the A orbits in M_, defined in (5.9), is mapped to itself by y in
(5.13). Hence in terms of the model My, of Mg the induced action is simply given by

Y0+ jiw+ A) = B+ ¥(iw) + A). (5.14)

The action on Mg = M. /N =~ My, given by (5.14) leaves invariant the compatible
PBs induced from those in (5.4), (5.5) by means of the DS reduction. Recall that the
Hamiltonian densities yielding the commuting Hamiltonians of the Kdv-type hierarchy on
M;eq are the components of A(j) € H, defining the ‘Abelianized’ form (3 + A()) + A)
of £L = (8 + j+ A) € M,. The uniqueness property of the Abelianization procedure in
(1.9},(1.10) implies the equality

Ry () =y () (5.15)

which means that the Hamiltonians corresponding to the components of A{j) in ?:{i are
invariant, and those corresponding to the eigenvalue —1 of y on the Heisenberg subalgebra
Ha are ‘anti-invariant’ (change sign) under the action of y. Since the PBs are y-invariant,
the Hamiltonian flows on M4 generated by the y-invariant Hamiltonians preserve the
fixed point set MY, C Myeq of y. (The ‘anti-invariant’ Hamiltonians vanish on the fixed
point set and the Hamiltonian flows defined by them are transverse to it.) Therefore we can
define a hierarchy on M;d by restricting the flows of the hierarchy generated on M4 by
the y-invariant Hamiltonians to ML,;. The flows of the resulting hierarchy are Hamiltonian
with respect to the compatible PBs on the space Mfed ~ M}; obtained from those on My,
by restricting the PBs of the y-invariant components of jiy, which may be regarded as
coordinates on My, to this fixed point set. We refer to the reduction procedure just given
as ‘discrete reduction’.

Using the gauge group AT whose Lie algebra is C*® (S', %), we can also perform
the above discussed DS-type reduction of the system on MY,

M ={L=3+T+AC_|JeC®(s,G")}). (5.16)

The system on A4Y consists of the compatible Poisson brackets, defined similarly to (5.4)
and (5.5) using G¥ in place of G, and the monodromy invariants. Here the invariant scalar
product ‘tr’ on G¥ C G is taken to be the restriction of that on G. Clearly, the system on
MY may be obtained by discrete reduction from the system on M. The discrete reduction
of M to MY induces the discrete reduction of My, to M,’:.d. We then have the following
resuit.

Proposition 5.1. 'The hierarchy on M;d defined as the discrete reduction of the hierarchy
on Mg is the same as the hierarchy obtained from the Ds-type reduction of the system
on M? using the regular semisimple element A € £(GY) and the gauge group AT =
exp (€ (5", 6)).
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Proof. The statement foliows by an elementrary ‘diagram chasing’ argument. |

The commutativity of the diagram comprising the two D3-type reductions and the
respective discrete reductions does not depend on using the models of the DS-reduced
systems provided by the respective lowest weight gauges, since the reduced systems
have gauge independent meaning. One usually has other convenient pauges as well for
describing Kdv-type systems and their ‘modified’ versions. Another possibility which is
often applicable is not to use any gauge at all for this purpose, but rather encode the
gauge invariant information contained in the first-order differential operator £ € M, in a
corresponding higher-order {pseudo-)differential operator. This will be illustrated by the
examples in subsection 5.2. In those examples the Kdv system associated by DS reduction
with a grade 1 regular semisimple element in the loop algebra of a classical Lie algebra,
realized as G for G = gl,, will turn out to be a discrete reduction of a hierarchy based
on gl.. In the above ¢ was assumed to be a simple Lie algebra, but of course the whole
construction applies equally to G = gl,.

5.2. Examples: Lax operators of Gel fand—Dicke type

A traditional method for describing Kdv-type systems that has proved fruitful in the past is
to find a Gel’fand-Dicke-type model, where the gauge invariant dynamical variables of the
system are encoded in a higher-order (pseudo-)differential Lax operator L. The operator L
is usually derived by an ‘elimination procedure’ (see, e.g., [1, 17,44]) applied to the linear
problem £y = 0 for £ € M. The purpose of this subsection is to derive the Gel'fand-
Dicke-type pseudo-differential Lax operators for a subset of the generalized Kav hierarchies
resulting from the approach discussed in subsection 5.1. We shall restrict ourselves to the
cases for which G is a classical Lie algebra and the regular reductive subalgebra involved
in the construction of the Heisenberg subalgebra of £{G) contains only A- or C-type simple
factors, see table 4. The reason for this restriction is that the elimination procedure proves
straightforwardly applicable in these cases. The cases involving the subalgebras D,, with
the conjugacy classes (7, P} < W(Dzp) appear more difficult and are sct aside for future
work. It will turn out that the Lax operators obtained from the eliminitation procedure may
also be derived by suitable restrictions from those related to gl,, given in equations (1.3)
and (1.4). The restriction consists of requiring the invariance of the Lax operator under
some involutive discrete symmetry. Proposition 5.1 will be used to identify the Poisson
brackets and the commuting Hamiltonians of the hierarchy in terms of the Gel’fand-Dicke
model. We shall study the C, and B, algebras in some detail, and essentially give the
results for D,.

3.2.1. Notation. Throughout this subsection, we use the 2 x 2 matrices o, t defined by

- 0 1 . 1 0
o= 1 0 T = 0 —1 5.17)

and the p x p matrices ¥,, 7, defined by

Mpdij =& pr—; ¥Yp>1 (5.18)

. p—1 p-—3 3-— 1-—
Yp:=dlag( 7 g zp, zp)
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For a p X p matrix g, fl = n,pun, is the transpose of 1 with respect to the antidiagonal.
As also displayed in (1.2), we have the regular semisimple element A, € £(A,_1),

p~1
Api=hep1 + ) et (5.19)
i=]
For any p > 1 and s € N, we fix some non-zero &; € C (i = 1,...,s) satisying
{d))P 5 (d})P for i # k (compare with table 1), and introduce the diagonal matrices
Do = diag(dh,....d) D :=diag(Do, ~1’50) A=—D. (5.20)

The r x r identity matrix is denoted by 1, for any integer r > 1. Finally, the
adjoint L! of some matrix pseudo-differential operator L = kN od* is by definition

Lt = Zng(_a)k(ak):-

5.2.2. Negative cycles in Cp;. 'We first consider the algebra Cp; with the conjugacy class of
W(C,;) associated with the signed partition (7, ...,P). This conjugacy class corresponds
to the regular semisimple subalgebra (Cp, + -+ -+ Cp) C Cp; in table 4. Following the
scheme outlined in subsection 4.1, we first introduce the 2p x 2p symplectic matrix Qs,,

) . o 1 ifi<j
Qpi=08np that is (Rap); = €() izpr1-; €6, J) = . .
—1 ifi > j.
(5.21)
The 2ps x 2ps symplectic matrix 2 used to define Cps C glap, is given by
2= 1; ® Qp = diag(f22. ..., R2,). {5.22)
According to (4.1) the grading operator is dap,j, with the 2ps x 2ps diagonal matrix
Ip =1, ® Y2, = diag(Yap, .. ., Yop). (5.23)
We also need the grade 1 regular semisimple element Ach € €(C,) given by
P 2p~1
A§, = hezpy + Zer’.i+l - Z €Li+l: (5.24)
=1 i=p+l
A grade 1 regular semisimple element A € £(Cp;) is then furnished by
A =Dy ® AS, = diag (d1AS,. ..., d,AS,). (5.25)

Let us perform the change of basis that gives rise to the permutation P on the indices
of the 2ps x 2ps matrices,

P2kp+i) =2 -1D+k+1 1€ig2p 0gksgs—-1. (5.26)

This amounts to exchanging the factors in the tensor products above, i.e. in the new basis
the symplectic matrix is written as & = £, ® 1, the grade 1 regular semisimple element
reads A = A§, ® Dy, and the grading matrix becomes Io = ¥5, ® 1. It will be convenient
that the entries of Iy are non-increasing along the diagonal.

Now we derive the Lax operator for the Kdv system following on from the DS reduction.
For this we apply the definitions of the constrained manifold M, in (5.7) and the gauge
group A in (5.8) to the case at hand. We then consider the linear problem for £ € M,,
that is the equation

Ly =@+j+A)y=0. (5.27)
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Here ¥ = (Y], ¥3.....¥3,) is a 2ps-vector and the y; (i = 1,...,2p) are s-
vectors. Equation {5.27) is covariant with respect to A if we complement (5.8) with the
transformation rule

&y ely vel e N (5.28)
Notice that the transformation in (5.28) leaves the component yr, invariant, because f is
now given by a 2ps x 2ps block-triangular matrix having § x 5 zero blocks on and above

the diagonal. It convenient to proceed by restricting £ € M. to the block-diagonal gauge,
where j is defined to have the form

j =diag8y,....0p) (5.29)
with

8; € C*(S%, gty) Bapri-i = —6f Vi=1,...,2p. (5.30)
Inserting j in (5.29) into (5.27) yields the system

@48 + Dovriya =0 i=1I,...,p

(8 + 6% — Doy =0 i=p+1,....2p—-1 (5.31)

(8 + B2p)4rap + ADoY = 0.
Upon elimination, this system leads to the eigenvalue equation

Ly = 2y (5.32)
where L is the s x s matrix differential operator of order 2p given by

L=(=1)P""DyY @8 + 80D (8 + 62p1) -+ DT (D + 61). (5.33)
As a consequence of (5.30), L is invariant with respect to the operation

L L:=D;'L!D,. (5.34)

If we use an expanded form of the Lax operator L, we have

ip
L= (~1)""' Dy + D' > " (wd™~* + 8% ) (5.35)
k=1
where the K4V fields u; € C%(S?, gl;) satisfy uf = (—1)*1; by the invariance property
L=1L.

Since the above elimination procedure can be reversed, equation (5.32) encodes all gauge
invariant information contained in the original linear problem (5.27). It is easy to see that
the Kdv fields u, in (5.35) are related by an invertible differential polynomial substitution
to the entries of the gauge fixed current in the lowest weight gauge of (5.9). The fields §, in
(5.33) are the dynamical variables of a ‘modified” version of the Kdav hierarchy. Expanding
the factorized operator (5.33) yields a generalization of the well known Miura map.

The Kdv system having the Lax operator L in (5.35) may be interpreted as a discrete
reduction (in the sense of subsection 5.1) of a Kdv system based on gi, for n = 2ps, In
fact, the subalgebra Cp; of glyps is the fixed point set of the involution y © glypy — glaps
defined by

yiX e pX)=-07'X'Q ¥ X € glps (5.36)

and the element A € £(Cp;) C £(glaps) given in (5.25) is also a grade 1 regular semisimple
element of £(glaps) (and of £(Azp:—1)). From this point of view A is associated with the
partition (2p, ...,2p) of n = 2ps representing a regular conjugacy class in W{Azp1).
Performing the DS reduction using glap instead of Cp, leads to 2 Kdv system whose
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Lax operator has the form in (5.35), but with arbitrary u; € Co(S!, gly). The related
modified K4V system is given by the operator (5.33) with unrestricted 8; € C®(S’, gl;).
Proposition 5.1 and what is known about the gl case [17] enables us to give 2 more detailed
description of the present generalized Kav hierarchy in the Gel’fand-Dicke framework. We
next explain this in detail.

Let M be the manifold of Lax operaiors L of the form in (5.35) with arbitrary Kdv fields
ug € C=(S', giy). Recall from [17] that the compatible PBs on M, regarded as a model of
the DS-reduced space M4 associated with gly,, are the standard first and second matrix
QGel’ fand-Dicke PBs [2-4] defined respectively by

1 f4, foY(L) = Tr(L([A4, BL] = [A_, B_]) (5.37)
{fa, F3YP(L) = Tr (BL(AL), — B(LA),L). (5.38)
Here Tr is the Adler trace [4] of matrix pseudo-differential operators (PDOs) given by
Tr(A) := fl trres (A) res (A) = A, VA=) A A eC®(S gl).
s k<ko
(5.39)

For an arbitrary PDO A, we use the splitting A = A+ A_ into parts containing non-negative
and negative powers of &, respectively. In equations (5.37),(5.38) f4 is the linear function
on M defined by fa{L) :=Tr(AL) for any fixed s x § matrix PDO A.

We have the discrete symmetry given by the Poisson mapping

PiM—->M pLy:=L=D;'LtDy, YLeM. (5.40)

The symmetry y is induced from the action (3.13) of ¥ in (5.36) on the constrained manifold
of the DS reduction considered for gis,,. This is easily seen with the aid of the corresponding
block-diagonal gauge, whose gauge section is mapped to itself by . The phase space of
the ‘discrete reduced’ hierarchy is the fixed point set M? C M of . Proposition 5.1
implies that the induced PBs on the fixed point set MP¥, which is a model of M,”ed, are
given by equations (5.37) and (5.38), where A and B have to be restricted to PDOs that are
antisymmetric with respect to the transformation 7. Indeed, if $(A) := Dy'AtDy = —A,
then f4(p(L)) = fa(L).

The commuting Hamiltonians of the hierarchy on M induced by the DS reduction may
be obtained as follows [17]. First one has to diagonalize L € M in the algebra of PDOs, i.e.
for any L one has to determine a diagonal PRO Lg:

o0
Lq = (=1)P*'D5*P9% + Zakazp-" with a; a diagonal matrix ¥ & (5.41)
k=1
for which
£0
L= ngg'1 g=1;+ Z gka"k with g, an off-diagonal matrix ¥ . (5.42)
k=1
By equations (5.41),{5.42), Ls(L) and g(L) are uniquely determined (differential
polynomial) functions of L € M. The commuting Hamiltonians are then provided by

Ho(L) := fsl (1), Yi=1,..,s (5.43)

Hy (L) = flres (La(L))E Vi=l,...,s k=12,... (5.44)
5
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where (Lg(L))/? is a fixed 2pth root of Ly(L). Thanks to the uniqueness property of
the diagonalization procedure in (5.41),(5.42) and the identity Tr(A") = — Tr(A), we can
verify

Hei (7 (L)) = (=1} He :(L) Yi=1,...,5 k=0,1,.... (5.45)

According to proposition 5.1, the commuting Hamiltonians of the discrete reduced
hierarchy on M? >~ A, are furnished by the restrictions of the p-invariant Hamiltonians
on M = M. We see from (5.45) that the invariant Hamiltonians are now the Hj (L)
for k any odd natuoral number. This completes our description of the PDO model of the
generalized Kdv hierarchy following from ps reduction in the case (p, ..., P) C W(Cp,).
The result is analogous to the s = 1 ‘scalar case’, for which the C,-type DS hierarchy is the
self-adjoint reduction of the gly,-type Gel’fand-Dicke (n-KdV for n = 2p) hierarchy [1].

5.2.3. Positive cycles in Cp;. We now turn to the case of positive cycles of odd length,
(p,...,p) with p = 2g + 1, in Cp;. The regular semisimple subalgebra associated in
table 4 with this conjugacy class of W(Cp;) is (Ap—1 + - -+ + Ap_1) C Cps The symplectic
matrix € is still given by (5.22). The grading of £(Cps) is now defined by the operator
dp 1, with Ip 1= 15, @ ¥,. Using equations (5.17)5.20), the grade 1 regular semisimple
element A € {{Cp)isgivenas A =D @ 1T ® A,

Let us perform the permutation
P2kp+iy:=2s(i — 1)+ k + 1

1<i<p 0<k<s~1, 5.46
P(2kp + p +1i) i=2si —k SESP S 049

After this permutation, the symplectic matrix writes as §2 = 77, ® §2o; and the grading matrix
becomes Iy = ¥, @ Lo, which has non-increasing entries along the diagonal. Fipally, with
D given in (5.20), we have

A=A,®D. (5.47)

Ag in the previous case, we consider the linear problem (5.27). Now the 2 ps-vector ¥
is decomposed as ¥ = (Y{,..., ¥, ) in terms of the 2s-vectors ¢; fori = 1,..., p. In the
block-diagonal gauge j has the form

J =diag(8,...,6;) (5.48)
with

8 € €™ (S', gh) 0 = — 0, | 2] Yi=1,...,p. (549
Combining (5.27) with (5.47),(5.48), we obtain the system

(@+ 6+ Dy =0 I€igp-1
(@ + 8,01, + ADY = 0.

By elimination, we then get the eigenvalue equation Ly = Ayr, where the 25 x 25 matrix
Lax operator L is given by

L=A@+86,) - A@+6) (5.51)

with A defined in (5.20). On account of (5.49) and Qg A’ 9:_[;] = —A, L (5.50)is
invariant with respect to the transformation

L L= A Lo A7 (5.52)

(5.50)
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If we write the Lax operator in expanded form as

Jid
L=ArP 4+ 8) (md"* + 07 y) (5.53)
k=1

then the invariance property L = L yields 1 = (— 1 ul Q5.

In a manner similar to that of the previous example, we see that the Kdv system
possessing the Lax operator in (5.53) is a discrete reduction of a system of the type in
(1.3), which is based on gi, with the partition (p, ..., p) of n = 2ps. K follows that the
compatible PBs of the Kdv system obtained from the DS reduction are given by (5.37),(5.38),
where 4 and B have to be restricted to PDOs that are antisymmetric with respect to the
discrete symmetry in (5.52),

A ATQIIAT = —A AQy BIQIIA™ = —B. (5.54)
2 25

Before the discrete reduction, i.e. on the space of Lax operators of the form in (5.53) but
with arbitrary coefficients u; € C®(S', glyp,), the commuting Hamiltonians are Ho (L)
defined as in (5.43) and Hj ;{L) defined by

Hy (L) :=fres (La(LNH® Vi=1,...2 k=12.... (555
8l

Here (Ly(L))'? is a fixed pih root of the diagonal PDO Ly(L) determined analogously
to (5.42). Choosing the leading term of (Ls(L)Y? to be A8, we find the transformation
property

Hy (L) = ~Hiaep1—i (L) Yi=1,...,2s k=0,1,.... (5.56)

Therefore the Hamiltonians of the Kdv system based on glzp, that are invariant with respect
to the discrete symmetry in (5.52) are furnished by

HF (L) = Hii(L) = Hipeqr-:(L) Yi=1,..5 k=0,1,.... (5.57)

As a consequence of proposition 5.1, the Hamiltonians obtained by inserting the Lax operator
L in (5.53) into (5.57) coincide with those resulting from ‘Abelianization’ in the DS reduction
realization of the generalized Kdv system associated with (p, ..., p) C W(Cpy).

5.2.4. Positive cycles in Dp;. The case of positive cycles of odd length, (p, ..., p) with
p = 2¢ + 1, in W(D,,) is very similar. We end up with a Lax operator L that has
the factorized form in (5.51), where the matrices §; now satisfy 8 = _gp-{-l—i- Thus the
invariance property of L is

-~

L=L for L L= AnyLiny, A~ (5.58)

The expanded form of the Lax operator can be written as in (5.53), where the 25 x 2¢
matrix KdV fields u, are now subject to uy = (—1)*#;. This KdV system is another discrete
reduction of the system based on g, with the partition {(p,..., p) of n = 2ps. The PBs
of this system following from the DS reduction can be obtained from the Gel'fand-Dicke
PBs in (5.37),(5.38) by restricting A and B to be antisymmetric PDOs with respect to the
transformation in (5.58). The commuting Hamilignians can be characterized analogously to
the preceding example.
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5.2.5. Positive cycles in Bp;,. Now we deal with the case of positive cycles of odd length
(p,....p) C W(Bp). p = 2g + 1. The corresponding regular semisimple subalgebra is
given by (Ap1 4+ -+ Ap_1) C By The 2ps + 1) x (2ps + 1) matrix 5 defining the
Bpg-invariant symmetric form can be taken to be

| P M2p 0
= . 5.5
1 ( 0o 1 (5:59)
The grading of £(B,;) is defined by the operator dj, ;, with
1®Y, O
Iy = . .
0 ( 0 0 ) (5.60)
The relevant grade 1 regular semisimple element A € £(B,;) can be written as
Dy@T®4A, 0
A= . 5.61
(™e5e o) o

See equations (5.17)-(5.20) for notation.

Let us change the basis using P in (5.46) to permute the first 2ps indices together with
the prescription P(2ps + 1) := 2ps + 1 for the last index. The matrix of the symmetric
form left invariant by Bpe C gl2pss:1 then becomes

_f M2ps 0
= ( 0 i ) (5.62)

The grading matrix reads

Y ,®@1,, 0O
=" . .
0 ( 0 0 ) (5.63)
The grade 1 regular element takes the form
A, @D 0
A= ( ,® ) (5.64)
0 0

In the linear problem (5.27) the vector Y may now be decomposed as o =
Wy, ..., 1,#;, &Y, where the ¢; (i = 1, ..., p) are 2s-vectors and ¢ is the last component of
Y. We now define the ‘block-diagonal’ gauge by restricting the (25 4+ 1) x (25 - 1) matrix
valued field j € C®(S', Byy) in £ = (3 + j + A) € M, to have the form

(" )

) b
j= a1 : (5.65)

By
\ ¢! 0/
The non-vanishing entries of j in (5.65) have grade zerc with respect to Iy in (5.63) and
satisfy
6; € C®(ghs, S 8 = —BGpui Vi=1,....p

5.66
b,c e C®(S!, C¥) €= —myb. (5:66)
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Substituting (5.64),(5.65) into (5.27), we obtain the system
B+ 63 + Dy =0 i=1,....q.9+2...., 2q
(@ + B 1)Vgs1 + DYgi2+ 09 =0

(5.67
@+ 8,0y + MDY =0 )
8¢ + ¢ Ygp1 = 0.
The component ¢ may be eliminated using the last equation, which yields
¢ = —3""c"Puu. (5.68)
Plugging (5.68) back into (5.67), further elimination leads to the eigenvalue equation
Ly = Ay (5.69)

where L is the following 25 x 25 matrix pseudo-differential operator;
L=A@+6,) - AB+0,42)A [0+ 001 — 37 '] A@+8,)- - A@+8). (570
Because of (5.66), L in (5.70) has the invariance property

=1L for L > L= ApsLimA™' (A =~D"1). (5.71)
The Lax operator given by (5.70) can be written in expanded form as
14
L=AP07 + A (udP™* + 077 uy) — Az 072 (5.72)
k=1
we € €08 gl)  m=(=Dl Yk=1,..,p 5.73)
2y, 2. € CR(SE, C¥) I- = =24, '

The above Lax operator can aiso be derived by performing the elimination on the
linear problem (5.27) in a DS gauge. For this it is convenient to consider the gauge
section Mpg C M, which by definition consists of the first-order differential operators
L =(3+ jos+ A) with

(o \

2

os=| (5.74)
Up—i
vy —Bpoy - —B2 —B 24 J

\ 2

where v, € C®(S', gla) subject to v, = (—1)*T, and zs are given in (5.73). The gange
section Mpg is a one-to-one model of the reduced space Mg = M /N following on
from the DS reduction in the present case. The fields v; in (5.74) and the u; in (5.72) are
related by an invertible differential polynomial substitution, but the field z_ appears only
in guadratic combinations in the expression (5.72) of L. This means that the manifold of
Lax operators L in (5.72) is now nor a one-to-one model of the space M..4. A convenient
parametrization of M4 is furnished by the set of all pairs (L., z_), where L, is the
differential operator part of L in (5.72) and z_ € C*(S§', C¥). This is somewhat similar
to the situation found in [1] for the principal case of the D, algebras, for which the Lax
oparators are skew-symmetric scalar psendo-differential operators having a negative part of
the form 731z with z € C* (', C).
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Finally, we note that the above KaV system associated by DS reduction with the conjugacy
class (p, ..., p) C W(B,;,) can be viewed as a discrete reduction of a Kdv system based on
glaps11 with the corresponding partition (p, ..., p, 1}, where p = 2g + 1 occurs 2s times.
The phase space of the system based on glaps+1 consists of the quadruples (L., y4, y—, w)
appearing in (1.4). The PBs and the commuting Hamiltonians are described in these variables
in [18].

5.2.6. Positive cycles plus a I-cycle in Dpo;. The case of positive cycles of odd length
p =2g+ 1 plus a I-cycle (p,..., p, 1) C W(Dp,1,) resembles the last one. Without
entering into details, let us give the form of the (2ps 4+ 2) x (2ps + 2) matrix valued field
Jj in the *block-diagonal’ gange,

(* |
8, b
j= o+l . (5.75)
Bp
\ ol d J
Here the 6; (i = 1,..., p) are 25 x 2s matrices satisfying §; = —-gp.l.l_;, b and ¢ are

rectangular 25 X 2 matrices related by ¢ = —ua,b12, and d is 2 2 X 2 matrix constrained by
d = —d. The corresponding pseudo-differential Lax operator L is given in factorized form
as

L=A0+6,) - AD +042)A[8+ 6,41 — (B +dY ' C]A@+8,)---A@ +6))
(5.76)

with A in (5.20). The operator L in (5.76) enjoys the invariance property (5.71) and can
be expanded as

]
L=AP3P + A (ud?* + 877 u) — Azy (9 + d)7'2t, o)
k=1
where the 25 x 25 matrices u; satisfy #; = (—1)*#; and the rectangular 25 x 2 matrices z,
and z_ are related by z. = —ne2472.

The generalized Kdv system at hand is related to a system based on G = gl, with
the partition (p...., p,1,1) of n = 2ps + 2 by means of an involution y : ¢ = G for
which G = Dj,.1. If there are more than one extra I-cycles contained in the partition
n, then graded regular semisimple elements do not exist in the corresponding Heisenberg
subalgebra of £(gl,). However, in the cases (p, ..., p, 1, ..., 1)—with an arbitrary number
of 1-cycles—the DS reduction still goes through without any difficulty using a grade I
semisimple element from the Heisenberg subalgebra. The resulting Kdv-type hierarchies
are studied in [18].

6. Some remarks on non-Abelian Toda systems

In section 5 we associated generalized Kdv systems to grade 1 regular semisimple elements
of £(¢). For completeness, below we wish to present the well known definition of
corresponding ‘non-Abelian affine Toda’ systems, and work out an example.
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To obtain a non-Abeliant affine Toda model, consider a grade 1 and a grade —1 regular
semisimple element, A and A, from some non-principal Heisenberg subalgebra of £(G).
The grading is given by the operator d,, 1, in (4.1). For simplicity we here assume that ad fy
has only integral eigenvalues. Similarly to equations (5.1), (5.2), for A and A given by

A=I.+AC_ A=T_+r"'C, (6.1
we suppose that
[C-,80]=1{0}  [C4, G50l = {0} (6.2)

The non-Abelian affine Toda equation is a relativistically invariant field equation for a field
g{x,t) that varies in a connected (non-Abelian) Lie group G generated by the grade zero
Lie subalgebra Gy C G. It is postulated to be the zero curvature equation

L4, L£2]1=0 (6.3)
with

Ly =38, +g 9,8+ A L_=3_+g "Ag (6.4)
where 8z 1= (&, &£ 8;). More explicitly, the field equation (6.3) reads

3_(¢7'0:8) = [L4, g7 1-g) +[C-, g7 Cugl. (6.5)

This is a deformation of the non-Abelian conformal Toda equation obtained from (6.3)
by omitting the second term on the right-hand side. The model admits two infinite series
of conserved local currents, which may be obtained with the aid of the Abeliznization of
Li=Ly—L_and £ =L, — L_, respectively, where the operators

L. =08, +gAg™ L_:=d_—d_gg '+ A (6.6)
enter the alternative zero-curvature representation
£y, 2.]1=0 6.7

of the field equation (6.5).

The models defined by (6.1)-{(6.4) are special cases of those proposed by Leznov and
Saveliev in [8]. They are distinguished by the applicability of the Abelianization procedure
described in (1.9}, (1.10). It is well known [1,7,9, 10, 11, 12] that infinitely many conserved
local currents also exist in the non-Abelian affine Toda models associated with grade 41
semisimple, not necessarily regular elements from £(G). In general the conserved local
currents are labelled by the basis elements of the centre of the centralizer of A (A) with
non-positive {non-negative) grades.

Suppose that we consider a regular conjugacy class of the Weyl group that has the
product structure in (4.4). The corresponding Toda model will then have the interpretation
as a ‘coupled system’ containing the Toda systems associated with grade £ 1 regular elements
from the primitive Heisenberg subalgebras H, ;, < £(Gg) for k = 1,...,r {see equations
{4.4)~(4.10)), which are coupled together by means of certain extra fields. The extra fields
correspond to the part of Gy outside the regular semisimple subalgebra given in (4.5). It
is easy to see that the extra fields can be consistently set to zero in the field equation
(6.5), which then reduces to a decoupled set of Toda equations associated with the primitive
conjugacy classes [wi] C W(G,).

‘We now wish to elaborate the non-Abelian affine Toda equation (6.5) for the two negative
cycles case (P.P) in Dap for any p 2 2. The motivation for considering this series of
examples is that for the classical Lie algebras (p, p) € W(D,,) are the only conjugacy

1 The Abelian affine Toda model is related to the principal Heisenberg subalgebra as is well known.
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classes of the Weyl group which are regular, primitive and different from a Coxeter class.

Choosing all constants a;. b; in (4.27) to be 1 for simplicity, the grade I gencrators of the
corresponding Heisenberg subalgebra are

2 2
Ari =Merp1 = €2p41.2) F D kbl = ) €pshpikt]

=1 =1
p—t

A2 = Meap,1 — e2p11.2p+2) + (8ap2p+1 — €12p42) + Z 22p 14k, 2p+ 24k {6.3)
=1

p—1

= Z €3p+k,3p+k+1
k=1

and the grade —1 generators, A_); ~ A~1(A; )%}, are

=1 p=1
-1
Aig=2"er2p ~ €22ps1) + (€21 — €2p41,20) 2D anbink — 2 ) Epriakpk
k=t k=1
p-1
-1
A2 =27 e14p — @2pr22p+1) F (€2p01.4p — E2p421) + 2 Ze29+?-+k‘2p+1+k (6.9)
k=1
p=1
—2) e3ptiek3pti-

k=t

These formulae are valid in the basis where the symmetric form n and the grading K are
given by (4.20} and (4.21), and it is convenient to permute the basis so that in the new basis
they take the following block-form:

K =diag(p,(p—1)l;,...,—(p— )z, —p)

n = antidiag (1, 12, ..., 13, 1).
According to the grading defined by K, we can write all matrices ina 2p+ 1) x 2p+ 1)
block-form, with the varicus blocks being 2 x 2 matrices and 2-component column
or row vectors, respectively. In order to write down the grade +I regular elements
A= dIAl,I +daAz, and A := dih_y1+ dzA._['z, it is useful to introduce

o= (j;) B = (—d:fz) Doy = (do‘ 32) (6.11)

= (g—.;) B = (—déz) _50 =2 (‘f)] -(?2) . (612)

Using this notation, in the new basis we have

(6.10)

and

p 2p
A= 88+ Z err+1 ® Do — Z et @ Dy —e2p2p01 @ B
=2 k=p-t1
+A (921,.1 Qo — 67_94.1'2@0':) (613)

and

P ip
A=e @8+ Z €14 ® Do — Z el ® Do —e2p11,2, ® ﬂt
k=2 k=p+1

+A-—l (El.2p ® Er —&32p4+1 & E) . (614)
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We write the group element g € Gy in the block-diagonal form
2p+i
g= ) ei®8 (6.15)
k=1
where g1, g2p41 € GL(1) and g € GL(2) otherwise, with the condition g'ng = 7
translating into

gaprar = (g ) fori=1,...,p+1. (6.16)
Then the non-Abelian affine Toda equation (6.5) takes the form

B-(g7'0,81) = B85 Ber - 87T () '
3_(g5'3482) = Dogy ' Dogz — 87 'Ba1B’ — g5 'dg; o 6.17)
3_(g;'0+8) = Dogyl  Dogi — g5 'Dogi-1De 2<k<p+1

where g;_,l_z = gp. The conformal Toda equation corresponding to equation (6.17) can be
obtained by dropping the terms containing « and &, The simplest version of equation (6.17)
arises for the Lie algebra D, and describes a GL(2) valued field g, interacting with two
‘scalars’ gy € GL(1)} and gz € O(2).

7. Conclusion

In this paper we studied a class of generalized Kdv hierarchies associated by Drinfeld-
Sokolov reduction with regular semisimple elements of grade ! in the non-twisted loop
algebras. We made use of the fact that the classification of the graded regular semisimple
elements in a loop algebra £(G) can be reduced to the known [27] classification of the regular
conjugacy classes in the Weyl group W(G) of the underlying simple Lie algebra G. The
regular conjugacy classes in W(G) parametrize the non-equivalent Heisenberg subalgebras
of £(G) containing graded regular semisimple elements. Restricting our attention to the
classical simple Lie algebras, we exhibited a relationship between the regular conjugacy
classes in W(G) and certain sfy subalgebras of G,

Let [w] € W(G) be a regular conjugacy class of order m for G a classical simple Lie
algebra. We have seen that there exists a lift & of a representative w € [w] that takes the
form % = exp (2ir ad Iy/m) in such a way that Iy is the semisimple element (‘defining
vector’) of an sf; subalgebra of G for which the largest eigenvalue of ad Iy is {m ~ 1). Any
regular element A of minimal positive grade from the corresponding Heisenberg subalgebra
has the form A = (C| + AC_n—_1y), Where [Jp, Ci] = kCy and C) can be included in an
sl; subalgebra containing Jy. The grade of A is one with respect to the grading operator
a1, = mA(d/dL) + ad L.

In the appendix it will be observed that the same relationship is valid between arbitrary
regular primitive conjugacy classes in the Weyl group and certain sl embeddings for
arbitrary simple Lie algebras. For a non-primitive regular conjugacy class {w] in the
Weyl group of an exceptional simple Lie algebra different from G, in some cases the order
of w € {w] is smaller than the largest spin plus one with respect to the s/, associated with
[aw].

Applying the above group-theoretic results, we provided a link between the generalized
Kdv hierarchies and W-algebras and made a step towards obtaining a more concrete
description of the Kdv systems. In particular, we derived Gel'fand-Dicke-type Lax operators
for the Kdv systems associated with grade 1 regular elements from such Heisenberg
subalgebras that are contained in a regular reductive subalgebra of a classical Lie algebra
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G comprising A- and C-type simple factors. In these cases the generalized Kdv systems
turned out to be discrete reductions of systems related to gl, having Lax operators of the
form given in (1.3) and (1.4).

The most interesting non-principal case occurting for the classical Lie algebras appears
to be given by the regular primitive conjugacy class (P,p) C W(Dy,), since the
corresponding Heisenberg subalgebra is not contained in a regular reductive subalgebra.
It is an intriguing question whether the generalized Kdv system associated with a grade 1
regular element with the aid of Drinfeld~Sokolov reduction admits a Gel’fand-Dicke-type
pseudo-differential operator model in this case or not. Such a model is usually not hard to
find using the elimination procedure, but for (7, 7} C W(Dz;) we have not yet succeeded.
The corresponding non-Abelian affine Toda system presented in section 6 would also deserve
further investigation.

In this study we used the interplay between the homogeneous grading and the grading
given by dp, 1, to define the constraints on the first-order differential operator L =23+ j+ A
containing the dynamical variables. It is known [1,7,11,12] that there are more general
possibilities: (i) the 4, ;, grading can be replaced by an arbitrary grading in which A
has definite grade; (ii) the homogeneous grading can be replaced by another standard
grading (associated with an appropriate vertex of the extended Dynkin diagram) or a grading
interpolating between a standard grading and the grading in which A has definite grade.
See aiso the remark at the end of section 2. It would be interesting to further explore these
more general possibilities for obtaining Kdv and partially modified Kdv systems, which are
related to the same basic set of modified Kdv systems by different Miora maps [1,7,11, 12].

We wish to remark that in some cases the partially modified systems correspond to
partial factorizations of a Lax operator that can be factorized into factors of order one,
not unlike the example when say a fourth-order Kdv operator L is partially factorized into
operators of order two according to

L=(@+6)0@+6)}3+8)@3+8)=LiL,
with
Ly =(3+&)@+6) and Ly = (3 +63)(+84).

We have restricted our attention to regular elements of minimal grade. According to
an argument in [12, 13], the systems associated with regular elements of higher grade in a
certain sense should not be new, although the Hamiltonian aspect of this claim is not well
understood.

Perhaps the most serious limitation of the present work is that we excluded ‘type
II" systems, that is systems associated with graded non-regular semisimple elements of
£(5), from the outset. 1t is an important open problem to classify the gradings that admit
graded semisimple elements for which Drinfeld-Sokolov reduction is possible in the sense
that polynomial ‘DS gauges’ exist. Some results on type II systems including interesting
examples can be found in {11,135, 18,45,46]. In particular, it was recently shown in [15]
that the phase space of the partially modified systems contains standard ¥ -aigebras coupled
together by the dynamics in both type T and type II cases subject to a certain non-degeneracy
condition.

It is worth noting that the regular conjugacy classes in the groups obtained as extensions
of the Weyl groups by diagram automorphisms have also been classified in [27], which is
relevant for constructing generalized Kdv and affine Toda systems based on the twisted loop
algebras.

In conclusion, we think the general framework of the Drinfeld—Sokolov approach is now
reasonably clear but further work would be needed to fully classify the integrable hierarchies

v
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that can be obtained from this approach. For instance, it would be of some interest to further
explore the Kdv systems that may be defined using arbitrary grade 1 regular semisimple
elements and arbitrary standard gradings and type I systems also deserve closer attention.
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Appendix. Canonical sl for any regular primitive conjugacy class

The purpose of this appendix is to present a property of the regular primitive conjugacy
classes in W(G) that generalizes the celebrated relationship [35] between the Coxeter class
and the principal si; subalgebra of §. We find this relationship by collecting known results
in the literature. A larger set of regular conjugacy classes enjoying the attractive features
of this relationship (properties 1-7 below) will also be pointed out.

Let G be an arbitrary simple Lie algebra, The primitive (semi-Coxeter) conjugacy
classes in W(G) are the building blocks of the general conjugacy classes [26] and the
regular primitive conjugacy classes are the building blocks of the general regular conjugacy
classes. The Coxeter class, whose Carter diagram [26] is the Dynkin diagram of G, is
the only primitive conjugacy class for the algebras of A, B, C and G, type. The other
primitive conjugacy classes can be uniquely labelied by the Carter diagrams Dy{a;) for
i =1,...,[/2] = 1, Falay), Egley} for i = 1,2, Ey{y) for i = 1,...,4 and Ex(a;)
for i = 1,...,8. The Coxeter class is always regular. Comparing the characteristic
polynomials of the primitive conjugacy classes given in [26] with those of the regular
conjugacy classes given in [27], it can be seen that the other regular primitive conjugacy
classes are Dog(ay—1) ~ (k, k) in W(Dy) fork =2,3,..., and

Fim), Es(a), Es(@m), Erla), Eq(as). Ez(a) fori=1,2356,8.
(A1)

Putting together the results of [27,35,39,41], we notice the validity of the following
statement.

Theorem A.1. Let [w] C W(G) be an arbitrary regular primitive conjugacy class of order
N. Then there exists a lift @ of w € [w] given by an inner antomorphism of G that has the
form

W = exp (2ir ad I/ N) (A.2)

where Iy is the semisimple element of an si; subalgebra of G, [y, fx] = £0, (L, I-] =
217y, such that

1. The largest eigenvalue of ad I equals (N —1).
2. There are no singlets in the sl; decomposition of G.
3. Only integral eigenvalues of ad Iy occur.
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Verification. The case of the Coxeter class ts due to Kostant [35]). The characteristic
diagrams [34) of the sl; embeddings corresponding? to the conjugacy classes

Ee(@), Eq7(ar), Egla), Eslaa), Ealas) (A.3)

are given in table 11 of [27], where the statement is proved concerning these cases. {See also
remarks (it} and (vii) betow.) In the algebras of E type, the ‘shift vector’ y; € ¢ defining a
so called canonical lift of a representative w € [w] was determined by Bouwknegt [41] for
all conjugacy classes [w] C W(G). For the definition and for the rather complex method
whereby y; was obtained, see [41]. In the case of the primitive conjugacy classes this
canonical lift takes the form @ = exp (2im ad ;/N). Comparing the tables of [41] with the
tables of Dynkin {34], one can verify that y; € G coincides with the defining vector of an sy
embedding if and only if the conjugacy class is regular. The s/; embeddings corresponding
to the conjugacy classes

Eg¢laz), Eq(as), Eg(as), Eglag), Ezlag) (A.4)
are identified in this way as those with Dynkin index [34]
36, 39, 184, 120, 40 (A.5)

respectively. Properties 1, 2 and 3 can be checked. In the Doy (ar—;) cases the lift satisfying
the statement of the theorem was determined in [39], as we have discussed in subsection 4.2
using the alternative parametrization Dy (a;—1) ~ (k, k). The remaining Fi(a;) case results
from the Es(az) case by applying the canonical diagram automorphism t of Eg, whose
fixed point set is F4. This is similar to an appropriate representative of the Coxeter class
of Eg reducing to a representative of the Coxeter class of Fy on the fixed point set of 7,
which is well known. In fact, E¢{as) and Fi{a;) can be represented by the squares of the
respective Coxeter elements. The s/, embedding associated with Eg{a;) by the theorem
is the principal sl in the regular subalgebra (As + Ai) C Eg, which is the same as the
principal sf; in the regular subaigebra (Cs 4+ A;) C Fy. Using in addition lemma 9.5 of
Springer [27], we can conclude that the latter sf; subalgebra of Fi, having Dynkin index
36, satisfies the statement of the theorem for Fy(a;). [}

Any representative of a reguiar primitive conjugacy class [w] C W(G) of order ¥ has
[27] a regular semisimple eigenvector associated with the eigenvalue wy = exp (2ix/N).
For the lift © given in the theorem, any semisimple eigenvector H of eigenvalue wy has
the form

H=0C+C vy with Cp # 0  [Ip, C¢l = k(. (A6)

We have the following consequence of the theorem.

Corollary A.2. Let 1 be the lift of a regular primitive conjugacy class {w] < W(G) given
in the theorem and H in (A.6) be a regular semisimple eigenvector of i with eigenvalue
wy. Let Hy C G be the Cartan subalgebra defined as the centralizer of . Then

4. The restriction of i to H g acts as a representative of the conjugacy class [w] © W(G).
5. Iy and C can be completed to an siz subalgebra of G,

+ Tn [27] there is a misprint in the diagram of the sl with Dynkin index 280 that cotresponds to Eg{as).
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Proof  Since @ maps My to itself it defines a representative of a conjugacy class in W(G).
This conjugacy class is obviously regular and has order N. Property 4 follows since there
can be only one regular conjugacy classes of a given order {27]. To show property 5, notice
that dim (}_ = dim go by property 2 in the theorem. Further notice that

Ker(ad Cy) N gh o = {0} {A.T)
by property 1 and by the assumption that H in (A.6) is regular semisimple. O

Let Iy, I+ be the s/, subalgebra given in the theorem and C_(y_yy some element of
gﬁ’w_”. Note that for Iy given . are not unique. Springer [27] has also shown the
following:

6. If (14 + C_(y-1y) is semisimple then it is regular semisimpie.
7. There exists C_y_yy such that ([, + C_x—y) is regular semisimple.

We wish to make some further remarks on the *canonical comrespondence’ between siz
embeddings and regular primitive conjugacy classes established above,

(i) The shift vector defining the canonical lift [39,41) of a primitive conjugacy class in
W(G) determines an si; embedding orly if the conjugacy class is regular.

(ii) The si; comesponding to a regular primitive (semi-Coxeter} conjugacy class is not
always a singular (semi-principal) si3.

(iii) The principal sl, and the sl; subalgebras corresponding to the conjugacy classes in
(A.3) satisfy [27] in addition to properties 2, 3 also the property that there occurs anly one
triplet in the sy decomposition of G. There exists only one additional sl, embedding with
these properties, corresponding to the regular embedding B; C F;. The multiplicity of the
largest spin sly multiplet in G is also one in these cases.

(iv) Relation (A.2) alone would not determine uniguely the conjugacy class of the sl
generator fy (think of non-conjugate powers of a Coxeter element). It may be checked that
{A.2) together with property 1 does so.

(v) The shift vector determined in {41] for all the conjugacy classes in W{Eg7q)
associates an sl embedding with every regular conjugacy class. Property 1 is not always
satisfied. In the cases for which it is not satisfied, the largest eigenvalue of ad % is in fact
equal to the order N of the regular conjugacy class [w]. This can be verified for W{Fj)
too. If property 1 is not satisfied, then relation (5.2}, [C_, QIO] {0, is not guaranteed
to hold for the grade 1 regular semisimple element A = (I, + AC.). When (5.2) fails to
be valid, it is necessary to modify the definition of the Drinfeld-Sokolov reduction used in
section 5.

{vi) There exist a few other sls embeddings and non-primitive regular conjugacy classes
in the Weyl group of a simple Lie algebra G for which all of the above presented equations
and properties 1-7 hold true as well. These conjugacy classes in W(G) are given by the
foliowing Carter diagrams;

Dy (ap-1) € W(By) fork =1 A € W(Gy) By e W(F)  Dy(a) € W(F)
(A8)

where for £ = 1 we use the definition Da(ag) := (T, T). The corresponding s!; is obtained
by taking the semi-principal or principal si; embedding in the respective regular simple
subalgebras of maximal rank

Dylap. ) C By fork>1 Az C G2 By CF Dyla)) C Fy (A.9)
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where Day(a,—;) denotes the semi-principal si; subaigebra in Do described in
subsection 4.2. For the alert reader, we note that Di(m) € Fs is the sl of Dynkin
index 12, although this labelling of it is missing in the table of {341,

(vii) Springer [27] studied the correspondence between sl embeddings and regular
conjugacy classes in the Weyl group using in addition to (A.2) and properties 1, 2, 3 the
assumption that there exists a regular semisimple eigenvector of ¥ given by (A.2) of the form
in {A.6). It can be checked that the s/, subalgebras corresponding to the regular primitive
conjugacy classes together with those in (A.8) yield the exhaustive set for which these
assumptions are satisfied. In [27] the strong additional assumption that the decomposition
of G under the si» contains only one triplet was used to ensure the existence of a regular
semisimple eigenvector.

In the above we have described a canonical correspondence between the regular
primitive conjugacy classes in the Weyl group and certain associated s/ embeddings. The
correspondence enjoys a set of attractive properties, which are shared by certain other
regular non-primitive conjugacy classes, given in (A.8), and corresponding s/> embeddings.
Some further nice properties valid in these cases can be found in [27]. This correspondence
ephances our understanding of the classification of integrable hierarchies associated with
regular conjugacy classes in the Weyl group and could be further exploited in more detailed
studies of these systems,
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